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Abstract
We consider the special type of field-theoretical symplectic structures called
weakly nonlocal. The structures of this type are, in particular, very
common for integrable systems such as KdV or NLS. We introduce here the
special class of weakly nonlocal symplectic structures which we call weakly
nonlocal symplectic structures of hydrodynamic type. We investigate then
the connection of such structures with the Whitham averaging method and
propose the procedure of ‘averaging’ the weakly nonlocal symplectic structures.
The averaging procedure gives the weakly nonlocal symplectic structure of
hydrodynamic type for the corresponding Whitham system. The procedure
also gives ‘action variables’ corresponding to the wave numbers of m-phase
solutions of the initial system which give the additional conservation laws for
the Whitham system.

PACS numbers: 02.30.Sa, 02.30.Ik, 02.40.Ma

1. Introduction

We consider weakly nonlocal symplectic structures having the form

�ij (x, y) =
∑
k�0

ω
(k)
ij (ϕ, ϕx, . . .)δ

(k)(x − y) +
g∑

s=1

esq
(s)
i (ϕ, ϕx, . . .)ν(x − y)q

(s)
j (ϕ, ϕy, . . .).

(1.1)

We put here ϕ = (ϕ1, . . . , ϕn), i, j = 1, . . . , n, es = ±1, ν(x − y) = 1
2 sign (x − y) and

ω
(k)
ij and q

(s)
i are some local functions of ϕ and its derivatives at the same point. We assume

that both sums contain a finite number of terms and all ω
(k)
ij and q

(s)
i depend on a finite number

of derivatives of ϕ.
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The form (1.1) can also be written in a more general form

�ij (x, y) =
∑
k�0

ω
(k)
ij (ϕ, ϕx, . . .)δ

(k)(x − y)

+
g∑

s,p=1

κspq
(s)
i (ϕ, ϕx, . . .)ν(x − y)q

(p)

j (ϕ, ϕy, . . .)

where κsp is some constant symmetric bilinear form. The form (1.1) gives then the ‘diagonal’
representation of the nonlocal part in the appropriate basis q(1), . . . , q(g).

The form (1.1) will play the role of the ‘symplectic’ 2-form on the space of functions

ϕ(x) = (ϕ1(x), . . . , ϕn(x)), −∞ < x < +∞
with the appropriate behaviour at infinity. We will put for simplicity ϕi(x) → 0 or, more
generally, ϕi(x) → const for x → ±∞ in this paper. Let us call the corresponding space the
loop space L0. We require that expression (1.1) gives the skew-symmetric closed 2-form on
the space L0 (let us not put here the requirement of non-degeneracy).

The weakly nonlocal symplectic structures (1.1) were introduced in [9] where the fact
that the ‘negative’ symplectic structures for KdV and NLS have this form was also proved.

Let us also state here a few words about the weakly nonlocal structures in the theory of
integrable systems. Namely, we mention the weakly nonlocal Hamiltonian and symplectic
structures which seem to be closely connected with local PDEs integrable in the sense of the
inverse scattering method. We will call here (as in [9]) the Hamiltonian structure on L0 weakly
nonlocal if it has a form similar to (1.1), i.e. the Poisson brackets of fields ϕi(x) and ϕj (y)

can be formally written as

{ϕi(x), ϕj (y)} =
∑
k�0

B
ij

(k)(ϕ, ϕx, . . .)δ
(k)(x − y)

+
g∑

s=1

esS
i
(s)(ϕ, ϕx, . . .)ν(x − y)S

j

(s)(ϕ, ϕy, . . .) (1.2)

with es = ±1.
We can also introduce the Hamiltonian operator Ĵ

ij
,

Ĵ
ij =

∑
k�0

B
ij

(k)(ϕ, ϕx, . . .)
∂k

∂xk
+

g∑
s=1

esS
i
(s)(ϕ, ϕx, . . .)D

−1S
j

(s)(ϕ, ϕx, . . .) (1.3)

where D−1 is the integration operator defined in the skew-symmetric way:

D−1ξ(x) = 1

2

∫ x

−∞
ξ(y) dy − 1

2

∫ +∞

x

ξ(y) dy.

For the functional H [ϕ] the corresponding dynamical system can be written in the form

ϕi
t = Ĵ

ij δH

δϕj (x)
=

∑
k�0

B
ij

(k)(ϕ, ϕx, . . .)
∂k

∂xk

δH

δϕj (x)

+
g∑

s=1

esS
i
(s)(ϕ, ϕx, . . .)D

−1

[
S

j

(s)(ϕ, ϕx, . . .)
δH

δϕj (x)

]
. (1.4)

The operator (1.3) should also be skew-symmetric and satisfy the Jacobi identity,

δJ ij (x, y)

δϕk(z)
+

δJ jk(y, z)

δϕi(x)
+

δJ ki(z, x)

δϕj (y)
≡ 0

(in the sense of distributions).
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It is not difficult to see that the functional

H =
∫ +∞

−∞
h(ϕ, ϕx, . . .) dx

generates a local dynamical system

ϕi
t = Si(ϕ, ϕx, . . .)

according to (1.4) if it gives a conservation law for all the dynamical systems

ϕi
ts

= Si
(s)(ϕ, ϕx, . . .), (1.5)

that is,

hts ≡ ∂xQs(ϕ, ϕx, . . .)

for some functions Qs(ϕ, ϕx, . . .).
As far as we know the first example of the Poisson bracket in this form (actually with zero

local part) was the Sokolov bracket [5]

{ϕ(x), ϕ(y)} = ϕxν(x − y)ϕy

for the Krichever–Novikov equation [6]

ϕt = ϕxxx − 3

2

ϕxx
2

ϕx

+
h(ϕ)

ϕx

= ϕxD
−1ϕx

δH

δϕ(x)

where h(ϕ) = c3ϕ
3 + c2ϕ

2 + c1ϕ + c0 and

H =
∫ +∞

−∞

(
1

2

ϕxx
2

ϕx
2

+
1

3

h(ϕ)

ϕx
2

)
dx.

This equation appeared originally in [6] describing the ‘rank 2’ solutions of the KP system.
In pure algebra, it describes the deformations of the commuting genus 1 pair OD operators
of rank 2 whose classification was obtained in this work. As was found later, the Krichever–
Novikov equation is a unique third order in x completely integrable evolution equation which
cannot be reduced to KdV by Miura-type transformations.

The symplectic structure corresponding to the Sokolov bracket is purely local:

�(x, y) = 1

ϕx

δ′(x − y)
1

ϕy

.

Let us mention that the local symplectic structures were considered by Dorfman and
Mokhov (see review [7]).

The hierarchy of the Poisson structures having the general form (1.2) was first written in
[8] for KdV,

ϕt = 6ϕϕx − ϕxxx,

using the local bi-Hamiltonian formalism (Gardner–Zakharov–Faddeev and Magri brackets)
and the corresponding recursion operator in the Lenard–Magri scheme. Let us present here
the pair of corresponding local Hamiltonian structures

Ĵ 0 = ∂/∂x

(Gardner–Zakharov–Faddeev bracket) and

Ĵ 1 = −∂3/∂x3 + 2(ϕ∂/∂x + ∂/∂xϕ)

(Magri bracket) and the first weakly nonlocal Hamiltonian operator

Ĵ 2 = ∂5/∂x5 − 8ϕ∂3/∂x3 − 12ϕx∂
2/∂x2 − 8ϕxx∂/∂x

+ 16ϕ2∂/∂x − 2ϕxxx + 16ϕϕx − 4ϕxD
−1ϕx.
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The operator Ĵ 2 is obtained by the action of the recursion operator

R̂ = −∂2/∂x2 + 4ϕ + 2ϕxD
−1

(such that R̂Ĵ 0 = Ĵ 1) on the operator Ĵ 1. The higher (‘positive’) Hamiltonian operators Ĵ n

can be obtained in the same recursion scheme by the formula Ĵ n = R̂
n
Ĵ 0. It was proved in

[8] that all operators Ĵ n for n > 1 can be written in the form

Ĵ n = (local part) −
n−1∑
k=1

S(k)(ϕ, ϕx, . . .)D
−1S(n−k−1)(ϕ, ϕx, . . .)

where S(1)(ϕ, ϕx, . . .) = 2ϕx and

S(k)(ϕ, ϕx, . . .) ≡ R̂S(k−1)(ϕ, ϕx, . . .)

are higher KdV flows.
The similar weakly nonlocal expressions for positive powers of the recursion operator for

KdV were also considered in [8]. Let us present here the corresponding result,

R̂
n = (local part) +

n∑
k=1

S(k)(ϕ, ϕx, . . .)D
−1 δH(n−k)

δϕ(x)
, n � 0

where S(k) = ∂xδH(k)/δϕ(x),H(0) = ∫
ϕ dx and

δH(k)

δϕ(x)
≡ δH(k−1)

δϕ(x)
R̂

are Euler–Lagrange derivatives of higher Hamiltonian functions for the KdV hierarchy. Let
us also mention that in our notation R̂ acts from the left on the vectors and from the right on
the 1-forms in the functional space L0.

Using the results of [8] it was proved in [9] that the ‘negative’ symplectic structures (i.e.
the inverse of ‘negative’ Hamiltonian operators) also have the weakly nonlocal form. Let us
formulate here the corresponding statement.

All the ‘negative’ symplectic structures �̂−n = (Ĵ−n)
−1, n � 0 for the KdV hierarchy

can be written in the following form:

�−n = (local part) +
n∑

k=0

δH(k)

δϕ(x)
D−1 δH(n−k)

δϕ(x)
.

It was conjectured in [9] that this structure of ‘positive’ Hamiltonian and ‘negative’
symplectic hierarchies should be very common for the wide class of integrable systems. In
particular, similar statements about the NLS equation

iψt = −ψxx + 2κ|ψ |2ψ
were proved in [9]. Let us give here also the corresponding statements for this case.

Two basic Hamiltonian operators can be written here in the form

Ĵ 0 =
(

0 i
−i 0

)
, Ĵ 1 =

(
0 ∂

∂ 0

)
− 2κ

(−ψ∂−1ψ ψ∂−1ψ̄

ψ̄∂−1ψ −ψ̄∂−1ψ̄

)
.

The recursion operator R̂ is defined again by formula R̂Ĵ 0 = Ĵ 1. For the ‘positive’
Hamiltonian operators Ĵ n = R̂

n
Ĵ 0 and ‘negative’ symplectic structures �̂−n = (Ĵ−n)

−1,

n � 1 the following statements will then be true [9].
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The ‘positive’ Hamiltonian operators Ĵ n and ‘negative’ symplectic structures �̂−n in the
hierarchy of Hamiltonian structures for NLS can be written in the form

Ĵ n = (local part) −
n∑

k=1

S(k−1)(ψ, ψ̄, . . .)D−1S(n−k)(ψ, ψ̄, . . .)

�̂−n = (local part) +
n∑

k=1

δH(k−1)

δ(ψ, ψ̄)(x)
D−1 δH(n−k)

δ(ψ, ψ̄)(x)

where

S(k) ≡ Ĵ 0
δH(k)

δ(ψ, ψ̄)(x)
, H(0) =

√
2κ

∫
ψψ̄ dx, and

δH(k)

δ(ψ, ψ̄)(x)
= R̂

δH(k−1)

δ(ψ, ψ̄)(x)

for any k � 1.1

General investigations of the weakly nonlocal structures of integrable hierarchies were
made in very recent works. Let us cite here the work [11] (see also references therein) where
the weakly nonlocal form of the structures described above was established for the integrable
hierarchies under rather general requirements.

It is possible to state that the weakly nonlocal structures play indeed quite an important
role in the theory of integrable systems.

Let us state that the ‘positive’ symplectic structures �̂n = Ĵ
−1
n and the ‘negative’

Hamiltonian operators Ĵ−n (n � 1) will have much more complicated form (not weakly
nonlocal) both for KdV and NLS hierarchies.

Let us formulate the theorem proved in [29] connecting the nonlocal and local parts for
the general weakly nonlocal Poisson brackets (1.2). We will assume that the bracket (1.2) is
written in ‘irreducible’ form, i.e. the ‘vector fields’,

S(s)(ϕ, ϕx, . . .) = (
S1

(s)(ϕ, ϕx, . . .), . . . S
n
(s)(ϕ, ϕx, . . .)

)t

which are linearly independent (with constant coefficients).

Theorem. For any bracket (1.2) the flows

ϕi
ts

= Si
(s)(ϕ, ϕx, . . .) (1.6)

commute with each other and leave the bracket (1.2) invariant.

The second statement means here that the Lie derivative of the tensor (1.2) along the flows
(1.6) is zero on the functional space L0.

However, the general classification of weakly nonlocal Hamiltonian structures (1.2) is
rather difficult and is unavailable at present.

Let us state now a few words about a very important class of weakly nonlocal Hamiltonian
and symplectic structures of hydrodynamic type (HT). These structures are closely connected
with the systems of hydrodynamic type (HT systems), i.e. the systems of the form

Uν
T = V ν

µ(U)U
µ

X, ν, µ = 1, . . . , N (1.7)

where V ν
µ(U) is some N × N matrix depending on the variables U 1, . . . , UN .

The Hamiltonian approach to systems (1.7) was started by Dubrovin and Novikov
[16, 19, 21] who introduced the local (homogeneous) Poisson brackets of hydrodynamic
type (Dubrovin–Novikov brackets). Let us give here the corresponding definition.

1 Actually, as was pointed out in [9] the NLS equation has in fact three local Hamiltonian structures (Ĵ 0, Ĵ 1, Ĵ 2) in
the variables r =

√
ψψ̄, θ = −i(ψx/ψ − ψ̄x/ψ̄) (i.e. ψ = r exp(i

∫
θ dx)).
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Definition 1. A Dubrovin–Novikov bracket (DN bracket) is a bracket on the functional space
(U 1(X), . . . , UN(X)) having the form

{Uν(X),Uµ(Y )} = gνµ(U)δ′(X − Y ) + b
νµ
λ (U)Uλ

Xδ(X − Y ) (1.8)

The corresponding Hamiltonian operator Ĵ
νµ

can be written as

Ĵ
νµ = gνµ(U)

∂

∂x
+ b

νµ
λ (U)Uλ

X

and is homogeneous w.r.t. transformation X → aX.
Every functional H of hydrodynamic type, i.e. the functional having the form

H =
∫ +∞

−∞
h(U) dX

generates a system of hydrodynamic type (1.7) according to the formula

Uν
T = Ĵ

νµ δH

δUµ(X)
= gνµ(U)

∂

∂x

∂h

∂Uµ
+ b

νµ
λ (U)

∂h

∂Uµ
Uλ

X. (1.9)

The DN bracket (1.8) is called non-degenerate if det‖gνµ(U)‖ �= 0.
As was shown by Dubrovin and Novikov, the theory of DN brackets is closely connected

with Riemannian geometry [16, 19, 21]. In fact, it follows from the skew-symmetry of
(1.8) that the coefficients gνµ(U) give, in the non-degenerate case, the contravariant pseudo-
Riemannian metric on the manifold MN with coordinates (U 1, . . . , UN) while the functions
�ν

µλ(U) = −gµα(U)bαν
λ (U) (where gνµ(U) is the corresponding metric with lower indices)

give the connection coefficients compatible with metric gνµ(U). The validity of the Jacobi
identity requires then that gνµ(U) be actually a flat metric on the manifold MN and the
functions �ν

µλ(U) give a symmetric (Levi-Civita) connection on MN [16, 19, 21].
In the flat coordinates n1(U), . . . , nN(U) the non-degenerate DN bracket can be written

in the constant form

{nν(X), nµ(Y )} = eνδνµδ′(X − Y )

where eν = ±1.
The functionals

Nν =
∫ +∞

−∞
nν(X) dX

are the annihilators of the bracket (1.8) and the functional

P = 1

2

∫ +∞

−∞

N∑
ν=1

eν (nν(X))
2 dX

is the momentum functional generating the system Uν
T = Uν

X according to (1.9).
The symplectic structure corresponding to a non-degenerate DN bracket has the weakly

nonlocal form and can be written as

�νµ(X, Y ) = eνδνµν(X − Y )

in coordinates nν or, more generally,

�νµ(X, Y ) =
N∑

λ=1

eλ ∂nλ

∂Uν
(X)ν(X − Y )

∂nλ

∂Uµ
(Y )

in arbitrary coordinates Uν .
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Let us also mention that the degenerate brackets (1.8) are more complicated but also have
a nice differential geometric structure [23].

The brackets (1.8) are closely connected with the integration theory of systems of
hydrodynamic type (1.7). Namely, according to the conjecture of Novikov, all the
diagonalizable systems (1.7) which are Hamiltonian with respect to DN brackets (1.8) (with
Hamiltonian function of hydrodynamic type) are completely integrable. This conjecture was
proved by Tsarev [41] who proposed a general procedure (‘generalized hodograph method’)
of integration of Hamiltonian diagonalizable systems (1.7).

In fact, Tsarev’s ‘generalized hodograph method’ permits us to integrate the wider
class of diagonalizable systems (1.7) (semi-Hamiltonian systems [41]) which appeared to
be Hamiltonian in a more general (weakly nonlocal) Hamiltonian formalism.

The corresponding Poisson brackets (Mokhov–Ferapontov bracket and Ferapontov
bracket) are the weakly nonlocal generalizations of the DN bracket (1.8) and are connected
with the geometry of submanifolds in pseudo-Euclidean spaces. Let us describe here the
corresponding structures.

The Mokhov–Ferapontov bracket (MF bracket) has the form [42]

{Uν(X),Uµ(Y )} = gνµ(U)δ′(X − Y ) + b
νµ
λ (U)Uλ

Xδ(X − Y ) + cUν
Xν(X − Y )U

µ

Y . (1.10)

As was proved in [42], expression (1.10) with det‖gνµ(U)‖ �= 0 gives the Poisson bracket
on the space Uν(X) if and only if

(1) the tensor gνµ(U) represents the pseudo-Riemannian contravariant metric of constant
curvature c on the manifold MN , i.e.,

R
νµ
λη (U) = c

(
δν
λδ

µ
η − δ

µ
λ δν

η

);
(2) the functions �ν

µλ(U) = −gµα(U)bαν
λ (U) represent the Levi-Civita connection of metric

gνµ(U).

The Ferapontov bracket (F bracket) is a more general weakly nonlocal generalization of
the DN bracket having the form [43–46],

{Uν(X),Uµ(Y )} = gνµ(U)δ′(X − Y ) + b
νµ
λ (U)Uλ

Xδ(X − Y )

+
g∑

k=1

ekw
ν
(k)λ(U)Uλ

Xν(X − Y )w
µ

(k)δ(U)Uδ
Y (1.11)

ek = ±1, ν, µ = 1, . . . , N .
Expression (1.11) (with det‖gνµ(U)‖ �= 0) gives the Poisson bracket on the space Uν(X)

if and only if [43, 46]

(1) tensor gνµ(U) represents the metric of the submanifold MN ⊂ E
N+g with flat normal

connection in the pseudo-Euclidean space E
N+g of dimension N + g;

(2) the functions �ν
µλ(U) = −gµα(U)bαν

λ (U) represent the Levi-Civita connection of metric
gνµ(U);

(3) the set of affinors
{
wν

(k)λ(U)
}

represents the full set of Weingarten operators corresponding
to g linearly independent parallel vector fields in the normal bundle, such that

gντ (U)wτ
(k)µ(U) = gµτ (U)wτ

(k)ν(U), ∇νw
µ

(k)λ(U) = ∇λw
µ

(k)ν(U)

R
νµ
λη (U) =

g∑
k=1

ek

(
wν

(k)λ(U)w
µ

(k)η(U) − w
µ

(k)λ(U)wν
(k)η(U)

)
.
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Besides that the set of affinors w(k) is commutative [w(k), w(k′)] = 0.
As was shown in [44] expression (1.11) can be considered the Dirac reduction of the

Dubrovin–Novikov bracket connected with the metric in E
N+g to the manifold MN with flat

normal connection. Let us also note that the MF bracket can be considered as a case of the F
bracket when MN is a (pseudo)-sphere SN ⊂ E

N+1 in a pseudo-Euclidean space.
The symplectic structures �νµ(X, Y ) for both (non-degenerate) MF bracket and F bracket

also have the weakly nonlocal form [9, 10] and can be written in general coordinates Uν as

�νµ(X, Y ) =
N+g∑
s=1

εs

∂ns

∂Uν
(X)ν(X − Y )

∂ns

∂Uµ
(Y )

where εs = ±1 and the metric GIJ in the space E
N+g has the form GIJ = diag(ε1, . . . , εN+g).

The functions n1(U), . . . , nN+g(U) are the ‘canonical forms’ on the manifold MN and play
the role of densities and annihilators of bracket (1.11) and ‘canonical Hamiltonian functions’
(see [9]) depending on the definition of phase space. In fact, the functions ns(U) are the
restrictions of flat coordinates of metric GIJ giving the DN bracket in E

N+g on manifold MN .
The mapping MN → E

N+g ,

(U 1, . . . , UN) → (n1(U), . . . , nN+g(U))

gives locally the embedding of MN in E
N+g as a submanifold with flat normal connection.

All the brackets (1.8), (1.10), (1.11) are connected with Tsarev’s method of integration
of systems (1.7). Namely, any diagonalizable system (1.7) Hamiltonian w.r.t. the (non-
degenerate) bracket (1.8), (1.10) or (1.11) can be integrated by the ‘generalized hodograph
method’.

We will not describe here Tsarev’s method in detail. However, let us point out that
the ‘generalized hodograph method’ and the HT Hamiltonian structures were very useful for
Whitham’s systems obtained by averaging of integrable PDEs [13, 15–21].

Let us now discuss the Whitham averaging method [13, 15–22]. We will restrict ourselves
to the evolution systems

ϕi
t = Qi(ϕ, ϕx, . . .) (1.12)

although the Whitham method can also be applied to more general PDE systems.
The m-phase Whitham averaging method is based on the existence of the finite-parametric

family of solutions of (1.12) having the form

ϕi(x, t) = �i(k(U)x + ω(U)t + θ0, U
1, . . . , UN) (1.13)

where k = (k1, . . . , km), ω = (ω1, . . . , ωm), θ = (θ1, . . . , θm), and �i(θ, U) are the
functions 2π -periodic w.r.t. each θα and depending on the finite set of additional parameters
U 1, . . . , UN . The solutions (1.13) are the quasiperiodic functions depending on N + m

parameters U 1, . . . , UN and θ1
0 , . . . , θm

0 .
In the Whitham method the parameters U 1, . . . , UN and θ1

0 , . . . , θm
0 become the slow-

modulated functions of x and t to get the slow-modulated m-phase solution of (1.12). We
then introduce the slow variables X = εx, T = εt, ε → 0 and try to find a solution of the
system

εϕi
T = Qi(ϕ, εϕX, . . .) (1.14)

having the form

ϕi(X, T ) =
+∞∑
k=0

εk�i
(k)

(
S(X, T )

ε
+ θ, X, T

)
(1.15)
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where �i
(k)(θ, X, T ) are 2π -periodic w.r.t. each θα and S(X, T ) = (S1(X, T ), . . . , Sm(X, T ))

is a ‘phase’ depending on the slow variables X and T [13, 14, 22].
It follows then that �i

(0)(θ, X, T ) should always belong to the family of exact m-phase
solutions of (1.12) at any X and T and we have to find the functions �i

(k)(θ, X, T ), k � 1
from the system (1.14). The existence of the solution (1.15) implies some conditions on the
parameters U(X, T ), θ0(X, T ) giving the zero approximation of (1.15). In particular, the
existence of �i

(1)(θ, X, T ) implies the conditions on U(X, T ) having the form of the system
(1.7). This system is called the Whitham system and describes the evolution of the ‘averaged’
characteristics of the solution (1.15) in the main order. The solution of the Whitham system
(1.7) is actually the main step in the whole procedure. Let us also mention that the Whitham
systems for so-called ‘integrable systems’ like KdV can usually be written in the diagonal
form [13, 15, 16, 19, 21, 48].

The Lagrangian formalism of the Whitham system and the averaging of the Lagrangian
function were considered by Whitham [13] who pointed out that the Whitham system admits
the (local) Lagrangian formalism if the initial system (1.12) was Lagrangian.

The Hamiltonian approach to the Whitham method was started by Dubrovin and Novikov
in [16] (see also [19, 21]) where the procedure of ‘averaging’ the local field-theoretical
Poisson bracket was proposed. The Dubrovin–Novikov procedure gives the DN bracket for
the Whitham system (1.7) in the case when the initial system (1.12) is Hamiltonian w.r.t. a
local Poisson bracket

{ϕi(x), ϕj (y)} =
∑
k�0

B
ij

(k)(ϕ, ϕx, . . .)δ
(k)(x − y)

with local Hamiltonian functional2

H =
∫ +∞

−∞
h(ϕ, ϕx, . . .) dx.

This procedure was generalized in [28, 29] for the weakly nonlocal Hamiltonian structures.
In this case, the procedure of construction of a general F bracket (or MF bracket) for the
Whitham system from the weakly nonlocal Poisson bracket (1.2) for initial system (1.12) was
proposed.

In this paper, we will consider the Whitham averaging method for PDEs having weakly
nonlocal symplectic structures (1.1) and construct the symplectic structures of hydrodynamic
type for the corresponding Whitham systems. Let us state that the corresponding HT
symplectic structures can in principle be more general than those connected with the Tsarev
integration method. The theory of integration of corresponding HT systems (1.7) should then
be more complicated in the general case.

We call here the weakly nonlocal symplectic structure of hydrodynamic type the
symplectic form �νµ(X, Y ) having the form

�νµ(X, Y ) =
M∑

s,p=1

κspω(s)
ν (U(X))ν(X − Y )ω(p)

µ (U(Y )) (1.16)

or in the ‘diagonal’ form

�νµ(X, Y ) =
M∑

s=1

esω
(s)
ν (U(X))ν(X − Y )ω(s)

µ (U(Y ))

2 The proof of Jacobi identity for the averaged bracket was obtained in [26].
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in coordinates Uν where κsp is some quadratic form, es = ±1 and ω(s)
ν (U) are closed 1-forms

on the manifold MN . Locally, the forms ω(s)
ν (U) can be represented as the gradients of some

functions f (s)(U) such that

�νµ(X, Y ) =
M∑

s,p=1

κsp

∂f (s)

∂Uν
(X)ν(X − Y )

∂f (p)

∂Uµ
(Y ). (1.17)

Generally speaking, we do not require here that the embedding MN ⊂ E
M given by

(U 1, . . . , UN) → (f (1)(U), . . . , f (M)(U)) gives the submanifold with flat normal connection.
Therefore, the corresponding Hamiltonian operators will not necessarily have the weakly
nonlocal form of the DN brackets, MF brackets or F brackets.

We propose here a procedure which permits us to construct the symplectic structure (1.16)
for the Whitham system in the case when the (local) initial system (1.12) has weakly nonlocal
symplectic structure (1.1) with some local Hamiltonian function

H =
∫ +∞

−∞
h(ϕ, ϕx, . . .) dx.

In section 2 we consider the general symplectic forms (1.1) and the HT symplectic forms
(1.16). In section 3 we consider the general features of the Whitham method and introduce
some conditions which we will need for the next considerations. In section 4 we introduce the
‘extended’ phase space and prove some technical lemmas about the ‘extended’ symplectic form
necessary for the averaging procedure of the forms (1.1). In section 5 we give the procedure for
averaging the forms (1.1) and prove that the Whitham system admits the symplectic structure
of hydrodynamic type given by the corresponding ‘averaged’ symplectic form. In section 6
we give another variant of averaging of forms (1.1) based on the averaging of weakly nonlocal
1-forms and give the weakly nonlocal Lagrangian formalism for the Whitham system.

2. General weakly nonlocal symplectic forms and the weakly nonlocal symplectic
forms of hydrodynamic type

Let us consider first the general weakly nonlocal symplectic forms (1.1). The nonlocal part
of (1.1) is skew-symmetric and we should require then also the skew-symmetry of the local
part of (1.1). We will assume everywhere that (1.1) is written in ‘irreducible’ form, i.e. the
functions q(s)(ϕ, ϕx, . . .) are linearly independent (with constant coefficients). Let us prove
here the following statement formulated in [9].

Theorem 1. For any closed 2-form (1.1) the functions q
(s)
i (ϕ, ϕx, . . .) represent the closed

1-forms on L0.

Proof. Let us denote by �′
ij (x, y) the local part of (1.1). We have to check the closeness of

2-form (1.1), i.e.

(d�)ijk(x, y, z) = δ�ij (x, y)

δϕk(z)
+

δ�jk(y, z)

δϕi(x)
+

δ�ki(z, x)

δϕj (y)
≡ 0

(in the sense of distributions) on L0.
We have then

(d�)ijk(x, y, z) = (d�′)ijk(x, y, z)

+
g∑

s=1

es

[
δq

(s)
i (x)

δϕk(z)
ν(x − y)q

(s)
j (y) + q

(s)
i (x)ν(x − y)

δq
(s)
j (y)

δϕk(z)

]
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+
g∑

s=1

es

[
δq

(s)
j (y)

δϕi(x)
ν(y − z)q

(s)
k (z) + q

(s)
j (y)ν(y − z)

δq
(s)
k (z)

δϕi(x)

]

+
g∑

s=1

es

[
δq

(s)
k (z)

δϕj (y)
ν(z − x)q

(s)
i (x) + q

(s)
k (z)ν(z − x)

δq
(s)
i (x)

δϕj (y)

]
.

(2.1)

We use here the Leibnitz identity and the relations

δϕi(x)

δϕj (y)
= δi

j δ(x − y),
δϕi

x(x)

δϕj (y)
= δi

j δ
′(x − y), . . . . (2.2)

The expression (d�′)ijk(x, y, z) is then purely local and all the nonlocality arises just in
the remaining part of (d�)ijk(x, y, z). Let us consider now the values

d�(ξ, η, ζ) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞
(d�)ijk(x, y, z)ξ i(x)ηj (y)ζ k(z) dx dy dz

where ξ i(x), ηi(x), ζ i(x) are the functions with finite supports such that the supports of all
ζ k(x) do not intersect with the supports of all ξ i(x), ηj (x) and moreover all supports of
ξ i(x), ηj (x) lie on the left of any support of ζ k(x). Using (2.1) and (2.2) it is easy to see then
that we can write in this case

d�(ξ, η, ζ) =
∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

g∑
s=1

es

×
[

δq
(s)
j (y)

δϕi(x)
ν(y − z)q

(s)
k (z) + q

(s)
k (z)ν(z − x)

δq
(s)
i (x)

δϕj (y)

]

× ξ i(x)ηj (y)ζ k(z) dx dy dz

= 1

2

∫ +∞

−∞

∫ +∞

−∞

∫ +∞

−∞

g∑
s=1

es

[
δq

(s)
i (x)

δϕj (y)
− δq

(s)
j (y)

δϕi(x)

]

× q
(s)
k (z)ξ i(x)ηj (y)ζ k(z) dx dy dz

= 1

2

g∑
s=1

es

[∫ +∞

−∞
q

(s)
k (z)ζ k(z) dz

]

×
∫ +∞

−∞

∫ +∞

−∞

[
δq

(s)
i (x)

δϕj (y)
− δq

(s)
j (y)

δϕi(x)

]
ξ i(x)ηj (y) dx dy ≡ 0.

Let us now use the fact that the functions q
(s)
i (x) = q

(s)
i (ϕ, ϕx, . . .) are local

translationally invariant (i.e. they do not depend explicitly on x) expressions depending on
ϕ(x) and their derivatives. Let us consider the functions ϕi(x) which can be represented as

ϕi(x) = ϕ̃i(x) + ˜̃ϕi
(x)

where

Supp ϕ̃(x) ⊂
⋃
k

Supp ζ k(x) Supp ˜̃ϕ(x) ⊂
[⋃

i

Supp ξ i(x)

] ⋃ 
⋃

j

Supp ηj (x)


 .

Denote

A(s)[ ˜̃ϕ, ξ, η] =
∫ +∞

−∞

∫ +∞

−∞

[
δq

(s)
i ( ˜̃ϕ, ˜̃ϕx, . . .)

δ ˜̃ϕj
(y)

− δq
(s)
j ( ˜̃ϕ, ˜̃ϕy, . . .)

δ ˜̃ϕj
(x)

]
ξ i(x)ηj (x) dx dy.
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We have then
g∑

s=1

esA
(s)[ ˜̃ϕ, ξ, η]

∫ +∞

−∞
q

(s)
k (ϕ̃, ϕ̃z, . . .)ζ

k(z) dz ≡ 0

(for all ϕ̃(z), ζ k(z)).
It is easy to show that for linearly independent set q(s)(ϕ̃, ϕ̃z, . . .) this system can have

only trivial solution A(s)[ ˜̃ϕ, ξ, η] ≡ 0 for any ξ i(x), ηj (y) and ˜̃ϕ which is equivalent to
condition (dq(s))ij (x, y) = 0 for any q

(s)
i (ϕ, ϕx, . . .). �

We will now put q(s)
i (ϕ, ϕx, . . .) = δH (s)/δϕi(x) where H(s) are some ‘local’ functionals

H(s)[ϕ] =
∫ +∞

−∞
h(s)(ϕ, ϕx, . . .) dx

and δ/δϕi(x) is the Euler–Lagrange derivative and consider the structures (1.1) in the form

�ij (x, y) =
∑
k�0

ω
(k)
ij (ϕ, ϕx, . . .)δ

(k)(x − y) +
g∑

s=1

es

δH (s)

δϕi(x)
ν(x − y)

δH (s)

δϕj (y)
. (2.3)

Let us consider now the weakly nonlocal symplectic structures of hydrodynamic type
(1.16).

Theorem 2. Expression (1.16) gives the closed 2-form on the space {U(X)} if and only if the
1-forms ω(s)

ν (U) on MN are closed3, i.e.

∂

∂Uν
ω(s)

µ (U) = ∂

∂Uµ
ω(s)

ν (U).

Let us say here that the statement analogous to theorem 2 was first proved by
O I Mokhov for the weakly nonlocal symplectic operators of hydrodynamic type having
the form ω̂ij = ai(U)D−1bj (U) + bi(U)D−1aj (U) (see [38, 39]). Theorem 2 represents the
not difficult generalization of this statement for the arbitrary number of terms in the non-local
structure (1.16).

Proof. Let us use the ‘diagonal’ form of (1.16). It is easy to see that the form (1.16) is
skew-symmetric. From theorem 1 we get that the forms ω(s)

ν (U) should be closed on the
functional space {U(X)}. We have then

δω(s)
µ (U(Y ))

δUν(X)
− δω(s)

ν (U(X))

δUµ(Y )
= ∂ω(s)

µ (U)

∂Uν
(Y )δ(Y − X) − ∂ω(s)

ν (U)

∂Uµ
(X)δ(X − Y )

=
[

∂ω(s)
µ (U)

∂Uν
(X) − ∂ω(s)

ν (U)

∂Uµ
(X)

]
δ(X − Y ) ≡ 0.

So we have

∂ω(s)
µ (U)

∂Uν
− ∂ω(s)

ν (U)

∂Uµ
≡ 0.

3 We assume that (1.16) is written in the ‘irreducible’ form, i.e. the 1-forms ω
(s)
ν (U) are linearly independent (with

constant coefficients).
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It is not difficult now to get, by direct calculation, that (d�)νµλ(X, Y,Z) can be written
in the form

(d�)νµλ(X, Y,Z) =
M∑

s=1

esω
(s)
ν (X)ν(X − Y )δ(Y − Z)

[
∂ω(s)

µ

∂Uλ
(Z) − ∂ω

(s)
λ

∂Uµ
(Z)

]

+
M∑

s=1

esω
(s)
µ (Y )ν(Y − Z)δ(Z − X)

[
∂ω

(s)
λ

∂Uν
(X) − ∂ω(s)

ν

∂Uλ
(X)

]

+
M∑

s=1

esω
(s)
λ (Z)ν(Z − X)δ(X − Y )

[
∂ω(s)

ν

∂Uµ
(Y ) − ∂ω(s)

µ

∂Uν
(Y )

]
.

So we get the second part of the theorem. �

We can put locally ω(s)
ν (U) = ∂f (s)(U)/∂Uν on MN and write the symplectic structure

(1.16) in a ‘conservative form’

�νµ(X, Y ) =
M∑

s=1

es

∂f (s)

∂Uν
(X)ν(X − Y )

∂f (s)

∂Uµ
(Y ). (2.4)

We will usually consider the form �νµ(X, Y ) on the loop space LP0 such that P0 ∈ MN is
some fixed point of MN and the functions U(X) → P0 (quickly enough) for X → ±∞. The
action of �νµ(X, Y ) will be usually defined on the ‘vector fields’ ξν(X) rapidly decreasing
for X → ±∞.

The 2-form �νµ(X, Y ) written in the form (2.4) can be considered as the pullback of the
form

�IJ (X, Y ) = eI δIJ ν(X − Y ), I, J = 1, . . . ,M

defined in the pseudo-Euclidean space E
N with the metric GIJ = diag(e1, . . . , eM) for the

mapping α: MN → E
N

(U 1, . . . , UN) → (f (1)(U), . . . , f (M)(U)).

Definition 2. We call the symplectic form (1.16) non-degenerate if M � N and

rank


 ω

(1)
i (U)

. . .

ω
(M)
i (U)


 = N.

It is easy to see that the non-degeneracy of �νµ(X, Y ) coincides with the condition of
regularity of N-dimensional submanifold α(MN) ⊂ E

N in the space E
N for M � N .

3. The families of m-phase solutions and the Whitham method

We will consider now the Whitham averaging method for the local systems

ϕi
t = Qi(ϕ, ϕx, . . .) (3.1)

having the weakly nonlocal symplectic structure (2.3) with a ‘local’ Hamiltonian functional

H =
∫ +∞

−∞
h(ϕ, ϕx, . . .) dx. (3.2)
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This means that∫ +∞

−∞
�ij (x, y)ϕ

j
t (y) dy =

∫ +∞

−∞
�ij (x, y)Qj (ϕ, ϕy, . . .) dy ≡ δH

δϕi(x)

on Ŵ0 where δ/δϕi(x) is the Euler–Lagrange derivative.
This requires, in particular, that the functionals H(s)[ϕ] be the conservation laws for the

system (3.1) such that

h
(s)
t ≡ ∂xJ

(s)(ϕ, ϕx, . . .) (3.3)

for some functions J (s)(ϕ, ϕx, . . .). The functional H [ϕ] is defined then actually up to the
linear combination of H(s)[ϕ] depending on the boundary conditions at infinity.

We assume now that the system (3.1) has a finite-parametric family of quasiperiodic
solutions

ϕi(x, t) = �i(k(U)x + ω(U)t + θ0, U), i = 1, . . . , n (3.4)

where θ = (θ1, . . . , θm), k = (k1, . . . , km), ω = (ω1, . . . , ωm) and �i(θ, U) give the
family of functions 2π -periodic w.r.t. each θα depending on the additional parameters
U = (U 1, . . . , UN).

The functions �i(θ, U) satisfy the system

gi(Φ, ωα(U)Φθα , . . .) = ωα(U)�i
θα − Qi(Φ, kα(U)Φθα , . . .) = 0 (3.5)

and we assume that the system (3.5) has the finite-parametric family � of solutions (for
generic k and ω) on the space of functions 2π -periodic w.r.t. each θα with parameters
U = (U 1, . . . , UN) and the ‘initial phase shift’ θ0 = (

θ1
0 , . . . , θm

0

)
. We can choose then

(in a smooth way) at every (U 1, . . . , UN) some function Φ(θ, U) as having zero initial phase
shift and represent the m-phase solutions of system (3.1) in the form (3.4).

In the Whitham method we make a rescaling X = εx, T = εt (ε → 0) of both variables
x and t and try to find a function

S(X, T ) = (S1(X, T ), . . . , Sm(X, T )) (3.6)

and 2π -periodic functions

�i(θ, X, T , ε) =
∑
k�0

�i
(k)(θ, X, T )εk (3.7)

such that the functions

φi(θ, X, T , ε) = �i

(
S(X, T )

ε
+ θ, X, T , ε

)
(3.8)

satisfy the system

εφi
T = Qi(φ, εφX, . . .) (3.9)

at every X, T and θ.
It is easy to see that the function Ψ(0)(θ, X, T ) satisfies the system (3.5) at every X and T

with

kα = Sα
X, ωα = Sα

T

and so belongs at every (X, T ) to the family �. We can then write

�i
(0)(θ, X, T ) = �i(θ + θ0(X, T ), U(X, T )).

We can then introduce the functions Uν(X, T ), θα
0 (X, T ) as the parameters characterizing

the main term in (3.7) which should satisfy the condition

[kα(U)]T = [ωα(U)]X. (3.10)
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We have to define now the functions �i
(1)(θ, X, T ) from the liner system

L̂
i

j�
j

(1)(θ, X, T ) = f i
(1)(θ, X, T ) (3.11)

where

L̂
i

j = L̂
i

(X,T )j = δi
jω

α(X, T )
∂

∂θα
− ∂Qi

∂ϕj
(Ψ(0)(θ, X, T ), . . .)

− ∂Qi

∂ϕ
j
x

(Ψ(0)(θ, X, T ), · · ·)kα(X, T )
∂

∂θα
− · · · (3.12)

is the linearization of system (3.5) and f(1)(θ, X, T ) is the discrepancy given by

f i
(1)(θ, X, T ) = −�i

(0)T (θ, X, T ) +
∂Qi

∂ϕ
j
x

(Ψ(0)(θ, X, T ), . . .)�
j

(0)X(θ, X, T )

+
∂Qi

∂ϕ
j
xx

(Ψ(0)(θ, X, T ), . . .)
(
2kα(X, T )�

j

(0)θαX + kα
X�

j

(0)θα

)
+ · · · (3.13)

where
∂

∂T
= Uν

T

∂

∂Uν
+ θα

(0)T

∂

∂θα
,

∂

∂X
= Uν

X

∂

∂Uν
+ θα

(0)X

∂

∂θα

for the functions

�i
(0)(θ, X, T ) = �i(θ + θ0(X, T ), U(X, T )).

We will assume that kα and ωα can be considered (locally) as the independent parameters
on the family � and the total family of solutions of (3.5) depends (for generic kα, ωα) on
N = 2m + r (r � 0) parameters Uν and m initial phases θα

(0).
It is easy to see that the functions Φθα (θ + θ0(X, T ), U(X, T )) and ∇ξΦθα (θ +

θ0(X, T ), U(X, T )) where ξ is any vector in the space of parameters Uν tangential to the

surface k = const, ω = const belong to the kernel of operator L̂
i

(X,T )j .
Let us put now some ‘regularity’ conditions on the family (3.4) of quasiperiodic solutions

of (3.1).

Definition 3. We call the family (3.4) the full regular family of m-phase solutions of (3.1) if

(1) the functions Φθα (θ, U),ΦUν (θ, U) are linearly independent (almost everywhere) on the
set �;

(2) the m + r linearly independent functions Φθα (θ, U),∇ξΦ(θ, U) (∇ξk = 0,∇ξω = 0)

give the full kernel of the operator L̂
i

[U]j (here θ0 = 0) for generic k and ω;

(3) there are exactly m+r linearly independent ‘right eigenvectors’ κ
(q)

[U](θ), q = 1, . . . , m+r

of the operator L̂
i

[U]j (for generic k and ω) corresponding to zero eigenvalues, i.e.∫ 2π

0
. . .

∫ 2π

0
κ

(q)

[U]i (θ)L̂
i

[U]jψ
j (θ)

dmθ

(2π)m
≡ 0

for any periodic ψj(θ).

We then have to put the m + r conditions of orthogonality of the discrepancy f(1)(θ, X, T )

to the functions κ
(q)

[U](X,T )(θ + θ0(X, T ))∫ 2π

0
. . .

∫ 2π

0
κ

(q)

[U(X,T )]i (θ + θ0(X, T ))f i
(1)(θ, X, T )

dmθ

(2π)m
= 0 (3.14)
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at every X, T to be able to solve the system (3.11) on the space of functions periodic w.r.t.
each θα .

The system (3.14) together with (3.10) gives m+(m+r) = 2m+r = N conditions at each
X and T on the parameters of zero approximation Ψ(0)(θ, X, T ) necessary for the construction
of the first ε-term in the solution (3.7). Let us prove now the following lemma about the
orthogonality conditions (3.14):

Lemma 1. Under all the assumptions of regularity formulated above the orthogonality
conditions (3.14) do not contain the functions θα

0 (X, T ) and give just the restriction on the
functions Uν(X, T ) having the form

C(q)
ν (U)Uν

T − D(q)
ν (U)Uν

X = 0

(with some functions C
(q)
ν (U),D

(q)
ν (U)).

Proof. Let us write down the part f̃(1)(θ, X, T ) of f(1)(θ, X, T ) which contains the derivatives
θα

0T (X, T ) and θα
0X(X, T ). We have from (3.13)

f̃
i

(1)(θ, X, T ) = −�i
(0)θβ (θ, X, T )θ

β

0T +
∂Qi

∂ϕ
j
x

(Ψ(0)(θ, X, T ), . . .)�
j

(0)θβ (θ, X, T )θ
β

0X

+
∂Qi

∂ϕ
j
xx

(Ψ(0)(θ, X, T ), . . .)2kα(X, T )�
j

(0)θαθβ (θ, X, T )θ
β

0X + · · · .

We can then write

f̃
i

(1)(θ, X, T ) =
[
− ∂

∂ωβ
gi(Φ(θ + θ0, U), . . .) + L̂

i

j

∂

∂ωβ
(�j (θ + θ0, U), . . .)

]
θ

β

0T

+

[
∂

∂kβ
gi(Φ(θ + θ0, U), . . .) − L̂

i

j

∂

∂kβ
(�j (θ + θ0, U), . . .)

]
θ

β

0X

where the constraints gi and the operator L̂
i

(X,T )j were introduced in (3.5) and (3.12)
respectively.

The derivatives ∂gi/∂ωβ and ∂gi/∂kβ are identically zero on � according to (3.5). We
have then ∫ 2π

0
. . .

∫ 2π

0
κ

(q)

[U(X,T )]i (θ + θ0(X, T ))f̃
i

(1)(θ, X, T )
dmθ

(2π)m
≡ 0

since all κ(q)(θ, X, T ) are the right eigenvectors of L̂ with zero eigenvalues.
It is easy to see also that all θ0(X, T ) in the arguments of Φ and κ(q) will disappear after

the integration so we get the statement of the lemma. �

Remark. As follows from the proof of lemma 1 we will always have in particular∫ 2π

0
. . .

∫ 2π

0
κ

(q)

[U(X,T )]i (θ + θ0(X, T ))�i
θβ (θ + θ0(X, T ), U(X, T ))

dmθ

(2π)m
≡ 0

for the case of the full regular family of quasiperiodic solutions (3.4).
The Whitham system can now be written in the form

∂kα

∂Uν
Uν

T = ∂ωα

∂Uν
Uν

X, α = 1, . . . , m

(3.15)
C(q)

ν (U)Uν
T = D(q)

ν (U)Uν
X, q = 1, . . . , m + r

where rank‖∂kα/∂Uν‖ = m according to our assumption above. In the generic case, the
derivatives Uν

T can be expressed through U
µ

X and the Whitham system (3.15) can be written in
the form (1.7).
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Let us state that the method described above is not the only one to get the Whitham system
for the system (3.1). In particular, the method of averaging of conservation laws [13, 15–22]
also gives another way to get the system for the slow modulations of parameters U(X, T ). It
can be shown that both these methods give the equivalent systems (1.7) for the parameters
U(X, T ) (in regular situation). Thus the averaged conservation laws then give the additional
conservation law for the system (3.15).

We will get here the symplectic representation of the conditions of compatibility of the
system (3.11) which is also equivalent to (3.15) in the generic case. In general, we can state
that the system (3.15) admits the averaged symplectic structure in the sense discussed above.

Let us now put some special conditions connected with ‘invariant tori’ corresponding to
quasiperiodic solutions (3.4) which we will need for the averaging of the symplectic structure
(2.3). Namely, we will require that we have m linearly independent local flows

ϕi
tα = Qi

(α)(ϕ, ϕx, . . .) (3.16)

(which can contain the system (3.1)) which commute with (3.1) and admit the same symplectic
structure (2.3) with some local Hamiltonian functions F(α)[ϕ], i.e.∫ +∞

−∞
�ij (x, y)Qi

(α)(ϕ, ϕy, . . .) dy ≡ δ

δϕi(x)
F(α)

where

F(α)[ϕ] =
∫ +∞

−∞
f(α)(ϕ, ϕx, . . .) dx.

This automatically means that the functionals H(s)[ϕ] should also give the conservation
laws for the systems (3.16) and we can write

h
(s)
tα ≡ ∂xJ

(s)
α (ϕ, ϕx, . . .) (3.17)

for some functions J (s)
α (ϕ, ϕx, . . .).

We will require that the flows (3.16) generate the ‘linear shifts’ of the angles θ
β

0 on the
solutions (3.4) with some frequencies ω

β

(α)(U) such that the matrix
∥∥ω

β

(α)

∥∥ is non-degenerate,
i.e. we have

ω
β

(α)(U)�i
θβ = Qi

(α)(Φ, kδ(U)Φθδ , . . .) (3.18)

with det
∥∥ω

β

(α)(U)
∥∥ �= 0.

Let us denote by
∥∥γ β

α

∥∥ the inverse matrix
∥∥ω

β

(α)

∥∥−1
such that

γ δ
α (U)ω

β

(δ)(U) = δβ
α . (3.19)

We can also write

�i
θα = γ β

α (U)Qi
(β)(Φ, kδ(U)Φθδ , . . .) (3.20)

on the family (3.4).

4. The extended phase space and some technical lemmas

In this section, we will prove some technical lemmas concerning the form (2.3) on the
‘extended’ functional space. As we stated already, we consider the form (2.3) on the loop
space W0 of functions ϕi(x) rapidly decreasing or approaching some fixed constants Ci

for x → ±∞. Let us now define the extended space Ŵ0 of smooth functions ϕi(θ, x)
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(θ = (θ1, . . . , θm)), 2π -periodic w.r.t. each θα and approaching the same constants Ci at each
θ for x → ±∞. We define the ‘extended’ symplectic form �̃ij (θ, θ ′, x, y) by the formula

�̃ij (θ, θ′, x, y) =
∑
k�0

ω
(k)
ij (ϕ(θ, x), ϕx(θ, x), . . .)δ(k)(x − y)δ(θ − θ′)

+
g∑

s=1

es

δH̃
(s)

δϕi(θ, x)
ν(x − y)δ(θ − θ′)

δH̃
(s)

δϕj (θ′, y)
, i, j = 1, . . . , n (4.1)

where the functionals H̃
(s)

are defined on Ŵ0 by the formula4

H̃
(s)

[ϕ] =
∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
h(s)(ϕ(θ, x), ϕx(θ, x), . . .)

dmθ

(2π)m
dx.

Let us also note that we normalize δ(θ′ − θ) such that∫ 2π

0
. . .

∫ 2π

0
δ(θ′ − θ)

dmθ ′

(2π)m
= 1.

It is easy to see that (4.1) gives the closed 2-form on Ŵ0. Let us now prove the first
technical lemma which we will need later.

Lemma 2. For any α, β = 1, . . . , m we have

Cαβ[ϕ] =
∫ +∞

−∞

∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
ϕi

θα (θ, x)�̃ij (θ, θ′, x, y)ϕ
j

θ ′β (θ
′, x) dx dy

dmθ

(2π)m

dmθ ′

(2π)m
≡ 0

on Ŵ0.

Proof. Let us first prove the relation

δCαβ[ϕ]

δϕi(θ, x)
≡ 0.

We will use the infinite-dimensional form of the relation
∂

∂xi
〈ξωη〉 = [Lξ〈ωη〉]i − [Lη〈ωξ〉]i − 〈ω[ξ, η]〉i

which is valid for the closed form ωij (x) on a manifold and any vector fields ξ i(x) and ηk(x).
The notation 〈ξωη〉, 〈ωξ〉 and 〈ωη〉 means here the function ξ jωjkη

k and the 1-forms ωjkξ
k

and ωjkη
k respectively. The operators Lξ and Lη are the Lie derivatives w.r.t. vector fields ξ

and η and [ξ, η] is the commutator of ξ and η.
Indeed, we have for any closed ωij (x),

∂

∂xi
(ξ jωjkη

k) = ∂ξj

∂xi
ωjkη

k + ξ j ∂ωjk

∂xi
ηk + ξ jωjk

∂ηk

∂xi

= ∂ξj

∂xi
ωjkη

k + ξ jωjk

∂ηk

∂xi
− ξ j

(
∂ωki

∂xj
+

∂ωij

∂xk

)
ηk

= ∂ξj

∂xi
ωjkη

k + ξ j ∂

∂xj
[ωikη

k] − ξ jωjk

∂ηk

∂xi
− ηk ∂

∂xk
[ωij ξ

j ]

− ωikξ
j ∂ηk

∂xj
+ ωijη

k ∂ξ j

∂xk

= [Lξ〈ωη〉]i − [Lη〈ωξ〉]i − 〈ω[ξ, η]〉i
(we assume summation over the repeated indices).

4 We can always normalize the densities h(s) such that h(s)(C, 0, . . .) = 0.
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In our case ∂/∂xi should be replaced by δ/δϕi(θ, x) and we can define the vector fields

ξ i(θ, x)[ϕ] = ϕi
θα , ηi(θ, x)[ϕ] = ϕi

θβ

and the corresponding dynamical systems on Ŵ0

ϕi
t1

= ϕi
θα , ϕi

t2
= ϕi

θβ

(let us recall that x and θ now also play the role of ‘indices’).
It is easy to see that the fields ξ[ϕ] and η[ϕ] commute with each other.
The expression Cαβ[ϕ] can now be written as 〈ξ�̃η〉 and we can write

δCαβ[ϕ]

δϕi(θ, x)
= [Lξ〈�̃η〉]i (θ, x) − [Lη〈�̃ξ〉]i (θ, x)

where

〈�̃ξ〉i (θ, x) =
∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
�̃ij (θ, θ′, x, y)ϕ

j

θα (θ
′, y)

dmθ ′

(2π)m
dy

=
∫ +∞

−∞
�ij (θ, x, y)ϕ

j

θα (θ, y) dy. (4.2)

Also

〈�̃η〉i (θ, x) =
∫ +∞

−∞
�ij (θ, x, y)ϕ

j

θβ (θ, y) dy (4.3)

where ϕi(θ, x), ϕj (θ, y) are considered just as the functions of x and y at any fixed θ.
The operations of Lie derivatives [Lξq]i (θ, x) and [Lηq]i (θ, x) for any 1-form qi(θ, x)

can be written as

[Lξq]i (θ, x) =
∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
ϕk

θ ′α (θ′, z)
δ

δϕk(θ′, z)
qi(θ, x)

dmθ ′

(2π)m
dz

+
∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
qk(θ

′, z)
δϕk

θ ′α (θ′, z)
δϕi(θ, x)

dmθ ′

(2π)m
dz

where

δϕk
θ ′α (θ′, z)

δϕi(θ, x)
= δk

i δθ ′α (θ′ − θ)δ(z − x).

So we have

[Lξq]i (θ, x) = − ∂

∂θα
qi(θ, x) +

∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
ϕk

θ ′α (θ′, z)
δqi(θ, x)

δϕk(θ′, z)
dmθ ′

(2π)m
dz

which is zero if qi(θ, x) does not contain explicit dependence on θ. (The same for
[Lηq]i (θ, x).)

Using expressions (4.2), (4.3) we see that neither of the forms 〈�̃ξ〉i (θ, x) and 〈�̃η〉i (θ, x)

depend explicitly on θ so we get δCαβ[ϕ]/δϕi(θ, x) ≡ 0 on Ŵ0.
Using now the fact that Cαβ[ϕ] ≡ 0 on the functions ϕi(θ, x) which are constants w.r.t.

θ at any given x we get the proof of the lemma. �

Let us introduce the nonlocal functionals

W(s)(θ, x)[ϕ] = D−1h(s)(ϕ, ϕx, . . .) = 1

2

∫ x

−∞
h(s)(ϕ(θ, y), ϕy(θ, y), . . .) dy

− 1

2

∫ +∞

x

h(s)(ϕ(θ, y), ϕy(θ, y), . . .) dy. (4.4)



656 A Ya Maltsev

It is easy to see that for any ϕ(θ, x) the functions W(s)(θ, x) are 2π -periodic w.r.t. each
θα and we also have

W(s)(θ,−∞) = −W(s)(θ, +∞) (4.5)

on L̂0 at any fixed θ.
We will also need the following simple proposition:

Proposition 1. The expressions

h
(s)
θα − δH̃

(s)

δϕi(θ, x)
ϕi

θα

can be written as total derivatives w.r.t. x of the local functions T (s)
α (ϕ, ϕx, . . .), i.e.

h
(s)
θα − δH̃

(s)

δϕi(θ, x)
ϕi

θα ≡ d

dx
T (s)

α (ϕ, ϕx, . . .) (4.6)

where

T (s)
α (ϕ, ϕx, . . .) =

∑
k�1

k−1∑
p=0

(−1)p
(

∂h(s)

∂ϕi
kx

)
px

ϕi
θα,(k−p−1)x . (4.7)

Proof. Using the formulae

h
(s)
θα = ∂h(s)

∂ϕi
ϕi

θα +
∂h(s)

∂ϕi
x

ϕi
θα,x + · · ·

δH̃
(s)

δϕi(θ, x)
= ∂h(s)

∂ϕi
−

(
∂h(s)

∂ϕi
x

)
x

+ · · ·

we get the required statement just by direct calculation. �

Let us now prove another important lemma.

Lemma 3.

(1) For any symplectic form (2.3) we have the relations

ϕi
θα

∑
k�0

ω
(k)
ij (ϕ, ϕx, . . .)ϕ

j

θβ ,kx
+

g∑
s=1

es

(
h

(s)

θβ T (s)
α − h

(s)
θα T

(s)
β +

(
T (s)

α

)
x
T

(s)
β

)

≡ ∂

∂θγ
Q

γ

αβ(ϕ, . . .) +
∂

∂x
Aαβ(ϕ, . . .) (4.8)

for some local functions Q
γ

αβ(ϕ, . . .), Aαβ(ϕ, . . .) (summation over the repeated indices).
(2) The functions Aαβ(ϕ, . . .) (defined modulo the constant functions) can be normalized in

such a way that Aαβ(ϕ, . . .) ≡ 0 for any ϕ(θ, x) depending on x only (and constant with
respect to θ at every fixed x).

Proof.

(1) Let us consider the values

Fαβ(θ, x) = ϕi
θα (θ, x)

∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
�̃ij (θ, θ′, x, y)ϕ

j

θ ′β (θ
′, y)

dmθ ′

(2π)m
dy.
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We have according to lemma 2,∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
Fαβ(θ, x)

dmθ

(2π)m
dx ≡ 0.

We have on the other hand

Fαβ(θ, x) = ϕi
θα

∑
k�0

ω
(k)
ij (ϕ, ϕx, . . .)ϕ

j

θβ ,kx

+
g∑

s=1

es

(
ϕi

θα

δH̃
(s)

δϕi(θ, x)

∫ +∞

−∞
ν(x − y)

δH̃
(s)

δϕj (θ, y)
ϕ

j

θβ dy

)
.

According to proposition 1 we can write

Fαβ(θ, x) = ϕi
θα

∑
k�0

ω
(k)
ij (ϕ, ϕx, . . .)ϕ

j

θβ ,kx

+
g∑

s=1

es

(
h

(s)
θα − (

T (s)
α

)
x

) ∫ +∞

−∞
ν(x − y)

(
h

(s)

θβ − (
T

(s)
β

)
y

)
dy

= ϕi
θα

∑
k�0

ω
(k)
ij ϕ

j

θβ ,kx
+

g∑
s=1

es

(
W

(s)
θαxW

(s)

θβ

− W
(s)
θαxT

(s)
β − W

(s)

θβ

(
T (s)

α

)
x

+
(
T (s)

α

)
x
T

(s)
β

)
(we used here relations (4.5) at infinity).
We can now rewrite Fαβ(θ, x) in the following form:

Fαβ(θ, x) = ϕi
θα

∑
k�0

ω
(k)
ij ϕ

j

θβ ,kx
+

g∑
s=1

es

[
W

(s)

θβx
T (s)

α − W
(s)
θαxT

(s)
β +

(
T (s)

α

)
x
T

(s)
β

]
+

g∑
s=1

es

×
[

1

2

(
W(s)

x W
(s)

θβ

)
θα − 1

2

(
W(s)

x W
(s)
θα

)
θβ +

1

2

(
W

(s)
θα W

(s)

θβ

)
x
− (

W
(s)

θβ T (s)
α

)
x

]
.

It is easy to see that
g∑

s=1

es

∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0

1

2

[(
W(s)

x W
(s)

θβ

)
θα − (

W(s)
x W

(s)
θα

)
θβ

] dmθ

(2π)m
dx ≡ 0

in view of the periodicity of W(s)(θ, x) w.r.t. all θα and∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0

[
1

2

(
W

(s)
θα W

(s)

θβ

)
x
− (

W
(s)

θβ T (s)
α

)
x

]
dmθ

(2π)m
dx

=
∫ 2π

0
. . .

∫ 2π

0

[
1

2
W

(s)
θα W

(s)

θβ

∣∣x=+∞
x=−∞ − W

(s)

θβ T (s)
α

∣∣x=+∞
x=−∞

]
dmθ

(2π)m
. (4.9)

Both terms in (4.9) are zero in view of (4.5) and T (s)
α → 0 for x → ±∞ on Ŵ0.

Using now the relations W
(s)
θαx = h

(s)
θα ,W

(s)

θβx
= h

(s)

θβ we have

∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0


ϕi

θα

∑
k�0

ω
(k)
ij ϕ

j

θβ ,kx

+
g∑

s=1

es

(
h

(s)

θβ T (s)
α − h

(s)
θα T

(s)
β +

(
T (s)

α

)
x
T

(s)
β

)
 dmθ

(2π)m
dx ≡ 0

so we get (4.8).
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(2) We can now normalize the functions Aαβ(ϕ, . . .) such that Aαβ = 0 for ϕi(θ, x) ≡
const = Ci . Now for any function ϕi(θ, x) depending only on x we have
(∂/∂x)Aαβ(ϕ, . . .) = 0 according to relation (4.8). Using the fact that Aαβ(θ,±∞) = 0
on Ŵ0 we get part (2) of the lemma on Ŵ0. Now using the fact that Aαβ(ϕ, . . .) is a
local expression of ϕ(θ, x) and its derivatives we get in fact that Aαβ(θ,±∞) ≡ 0 for
any ϕ(θ, x) depending on x only for this normalization of Aαβ which actually does not
depend on the constants Ci . �

We will also need the following technical lemma.

Lemma 4. For any symplectic form (2.3) we have

−
∫ 2π

0
. . .

∫ 2π

0
Aαβ(ϕ(θ, y), ϕy(θ, y), . . .)

dmθ

(2π)m
+

∫ 2π

0
. . .

∫ 2π

0

∑
k�1

k∑
p=1

C
p

k (−1)p−1

× (
ϕi

θα (θ, y)ω
(k)
ij (ϕ(θ, y), . . .)ϕ

j

θβ ,(k−p)y

)
(p−1)y

dmθ

(2π)m

− 1

2

∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

es

[
W

(s)
θα (θ, y)W

(s)

θβ (θ, y)

−W
(s)
θα (θ, +∞)W

(s)

θβ (θ, +∞)
] dmθ

(2π)m

+
∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

esT
(s)
α (θ, y)W

(s)

θβ (θ, y)
dmθ

(2π)m

+
∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

es

(
W

(s)
θα (θ, y) − T (s)

α (θ, y)
)

× (
W

(s)

θβ (θ, y) − T
(s)
β (θ, y)

) dmθ

(2π)m

≡
∫ 2π

0
. . .

∫ 2π

0
Aβα(ϕ(θ, y), ϕy(θ, y), . . .)

dmθ

(2π)m

+
1

2

∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

es

[
W

(s)
θα (θ, y)W

(s)

θβ (θ, y)

−W
(s)
θα (θ, +∞)W

(s)

θβ (θ, +∞)
] dmθ

(2π)m

−
∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

esW
(s)
θα (θ, y)T

(s)
β (θ, y)

dmθ

(2π)m

(4.10)

where the values Aαβ (normalized in the ‘right’ way), W(s) and T (s)
α are introduced in (4.8),

(4.4) and (4.7) respectively.

Proof. Let us consider the quantities

Eαβ(y) =
∫ +∞

−∞

∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
ϕi

θα (θ, z)�̃ij (θ, θ′, z, w)ϕ
j

θ ′β (θ
′, w)

× ν(w − y) dz dw
dmθ

(2π)m

dmθ ′

(2π)m
.
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We have

Eαβ(y) =
∫

ϕi
θα (θ, z)

∑
k�0

ω
(k)
ij (ϕ, ϕw, . . .)δ(k)(z − w)ϕ

j

θβ (θ, w)ν(w − y) dz dw
dmθ

(2π)m

+
∫ g∑

s=1

es

(
W

(s)
θαz − (

T (s)
α

)
z

)
ν(z − w)

× (
W

(s)

θβw
− (

T
(s)
β

)
w

)
ν(w − y) dz dw

dmθ

(2π)m
.

We can calculate these values in two ways:

(I) Let us first make the integration with respect to z. We have

Eαβ(y) =
∫ ∑

k�0

(−1)k
(
ϕi

θα (θ, w)ω
(k)
ij (ϕ, ϕw, . . .)

)
kw

ϕ
j

θβ (θ, w)ν(w − y) dw
dmθ

(2π)m

−
∫ g∑

s=1

es

(
W

(s)
θα − T (s)

α (z)
)(

W
(s)

θβw
− (

T
(s)
β

)
w

)
ν(w − y) dw

dmθ

(2π)m

=
∫ 

∑
k�0

(−1)k
(
ϕi

θαω
(k)
ij

)
kw

ϕ
j

θβ −
g∑

s=1

es

(
h

(s)
θα T

(s)
β

−h
(s)

θβ T (s)
α +

(
T

(s)
β

)
w
T (s)

α

)
 ν(w − y) dw

dmθ

(2π)m

−
∫ g∑

s=1

es

[
1

2

(
W

(s)
θα W

(s)

θβ

)
w

− 1

2

(
W

(s)

θβ W(s)
w

)
θα

+
1

2

(
W

(s)
θα W(s)

w

)
θβ − (

W
(s)
θα T

(s)
β

)
w

]
ν(w − y) dw

dmθ

(2π)m
.

Using now the skew-symmetry of the form �̃ij (θ, θ′, z, w) and relations (4.8) we can
write

Eαβ(y) = −
∫

(Aβα(θ, w))wν(w − y) dw
dmθ

(2π)m

−
∫ g∑

s=1

es

[
1

2

(
W

(s)
θα W

(s)

θβ

)
w

− (
W

(s)
θα T

(s)
β

)
w

]
ν(w − y) dw

dmθ

(2π)m

=
∫

Aβα(θ, y)
dmθ

(2π)m
−

∫
W

(s)
θα (θ, y)T

(s)
β (θ, y)

dmθ

(2π)m

+
1

2

∫ g∑
s=1

esW
(s)
θα (θ, y)W

(s)

θβ (θ, y)
dmθ

(2π)m

− 1

4

∫ [
W

(s)
θα (θ, +∞)W

(s)

θβ (θ, +∞) + W
(s)
θα (θ,−∞)W

(s)

θβ (θ,−∞)
] dmθ

(2π)m

(we used the relation Aβα(θ,±∞) = 0 on Ŵ0).
(II) Let us now first make the integration with respect to w. We have

Eαβ(y) =
∫

ϕi
θα (θ, z)

∑
k�0

ω
(k)
ij (ϕ, ϕz, . . .)ϕ

j

θβ ,kz
(θ, z)ν(z − y) dz

dmθ

(2π)m
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+
∫

ϕi
θα (θ, z)

∑
k�1

k∑
p=1

C
p

k ω
(k)
ij (ϕ, ϕz, . . .)

×ϕ
j

θβ ,(k−p)z
(θ, z)δ(p−1)(z − y) dz

dmθ

(2π)m

+
∫ g∑

s=1

es

[
W

(s)
θαz(θ, z) − (

T (s)
α

)
z
(θ, z)

]

×
[
W

(s)

θβ (θ, z) − T
(s)
β (θ, z) +

1

4
W

(s)

θβ (θ,−∞)

− 1

4
W

(s)

θβ (θ, +∞)

]
ν(z − y) dz

dmθ

(2π)m

−
∫ g∑

s=1

es

[
W

(s)
θαz(θ, z) − (

T (s)
α (θ, z)

)
z

]

× ν(z − y)
[
W

(s)

θβ (θ, y) − T
(s)
β (θ, y)

]
dz

dmθ

(2π)m

= −
∫

Aαβ(θ, y)
dmθ

(2π)m
+

∫ ∑
k�1

k∑
p=1

C
p

k (−1)p−1

× (
ϕi

θα (θ, y)ω
(k)
ij (ϕ, ϕy, . . .)ϕ

j

θβ ,(k−p)y
(θ, y)

)
(p−1)y

dmθ

(2π)m

− 1

2

∫ g∑
s=1

esW
(s)
θα (θ, y)W

(s)

θβ (θ, y)
dmθ

(2π)m

+
1

4

∫ g∑
s=1

es

[
W

(s)
θα (θ,−∞)W

(s)

θβ (θ,−∞)

+ W
(s)
θα (θ, +∞)W

(s)

θβ (θ, +∞)
] dmθ

(2π)m

+
∫ g∑

s=1

esT
(s)
α (θ, y)W

(s)

θβ (θ, y)
dmθ

(2π)m

+
∫ g∑

s=1

es

(
W

(s)
θα (θ, y) − T (s)

α (θ, y)
)(

W
(s)

θβ (θ, y) − T
(s)
β (θ, y)

) dmθ

(2π)m
.

Comparing (I) and (II) and using (4.5) we now get the statement of the lemma. �

5. The averaging of the weakly nonlocal symplectic structures

Let us now make the change X = εx, T = εt . We can again define a symplectic form in new
coordinates which can be written as

�̂ij (θ, θ′, X, Y ) =
∑
k�0

ω
(k)
ij (ϕ(θ, X), εϕX(θ, X), . . .)εkδ(k)(X − Y )δ(θ − θ′)

+
1

ε

g∑
s=1

es

δĤ (s)

δϕi(θ, X)
ν(X − Y )δ(θ − θ′)

δĤ
(s)

δϕj (θ′, Y )
, i, j = 1, . . . , n

(5.1)
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where

Ĥ
(s) =

∫ +∞

−∞

∫ 2π

0
. . .

∫ 2π

0
hs(ϕ(θ, X), εϕX(θ, X), . . .)

dmθ

(2π)m
dX.

We will assume for simplicity that the family � of solutions of (3.5) contains the solutions
corresponding to kα = 0 for some parameters U = U0 such that �i(θ, U0) = Ci = const (we
should have Qi(C, 0, . . .) = 0 in this case).

Let us introduce the functional ‘submanifold’ M0 in the space of functions ϕ(θ, X)

(2π -periodic w.r.t. each θα) in the following way:

(1) We require that the functions ϕ(θ, X) from M0 belong to the family � of solutions of
(3.5) at any fixed X.

(2) We put U(X) → U0 (i.e. ϕi(θ, X) → Ci) for X → ±∞ (rapidly enough).

The functions U(X), θ0(X) can be taken as the coordinates on the submanifold M0 such
that we have

ϕi
[U,θ0](θ, X) = �i(θ + θ0(X), U(X))

for the functions belonging to M0.
We will also consider the ‘ε-deformations’ Mε[Ψ(1)] of the submanifold M0 defined

with the aid of an arbitrary function Ψ(1)(θ, X) 2π -periodic w.r.t. each θα and such that

�i
(1)(θ, X) → 0 for X → ±∞.

Namely, we put

ϕi
[U,θ0](θ, X) = �i(θ + θ0(X), U(X)) + ε�i

(1)(θ + θ0(X),X)

which defines the ε-deformation of the function ϕ[U,θ0] corresponding to the coordinates
U(X), θ0(X). It is easy to see that the case Ψ(1) = 0 corresponds to the submanifold M0.

Let us now introduce the new coordinates θ∗
0(X) on M0 and Mε[Ψ(1)] in the following

way,

θ∗α
0 (X) = θα

0 (X) − 1

ε
Sα(X)

where

Sα(X) =
∫ +∞

−∞
ν(X − Y )kα(U(Y )) dY.

We can then write on any Mε[Ψ(1)]

ϕi
[U,θ∗

0](θ, X) = �i(θ + θ∗
0(X) +

1

ε
S(X), U(X)) + ε�i

(1)(θ + θ∗
0(X) +

1

ε
S(X),X). (5.2)

We can see that the functions ϕi
[U,θ∗

0](θ, X) become rapidly oscillating functions of X (for
fixed θ) for any fixed ‘coordinates’ U(X), θ∗

0(X) and ε → 0. It is easy to see also that (5.2)
represents in fact the first two terms of the expansion of asymptotic solutions (3.8) for the
appropriate Ψ(1).

Let us now formulate the theorem about the restriction of 2-form �̂ij (θ, θ′, X, Y ) on the
submanifolds Mε[Ψ(1)].
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Theorem 4. The restriction of the form �̂ij (θ, θ′, X, Y ) to any submanifold Mε[Ψ(1)] in
coordinates Uν(X), θ∗α

0 (X) can be written as

�rest =
∫ +∞

−∞

∫ +∞

−∞
�1

νµ(X, Y )δUν(X)δUµ(Y ) dX dY

+
∫ +∞

−∞

∫ +∞

−∞
�2

να(X, Y )δUν(X)δθ∗α
0 (Y ) dX dY

+
∫ +∞

−∞

∫ +∞

−∞
�3

αν(X, Y )δθ∗α
0 (X)δUν(Y ) dX dY

+
∫ +∞

−∞

∫ +∞

−∞
�4

αβ(X, Y )δθ∗α
0 (X)δθ

∗β

0 (Y ) dX dY

where

(I) the weak limit5 �1(wl)
νµ (X, Y ) of the form �1

νµ(X, Y ) can be written as

�1(wl)
νµ (X, Y ) = 1

ε

m∑
α=1

(
∂kα

∂Uν
(X)ν(X − Y )

∂Iα

∂Uµ
(Y ) +

∂Iα

∂Uν
(X)ν(X − Y )

∂kα

∂Uµ
(Y )

)

+
1

ε

g∑
s=1

es

∂〈h(s)〉
∂Uν

(X)ν(X − Y )
∂〈h(s)〉
∂Uµ

(Y ) +
o(1)

ε

where expressions 〈h(s)〉(U) are the averaged densities h(s)(ϕ, ϕx, . . .) and the functions
Iα(U) are defined through the formulae

∂Iα

∂Uν
= − ∂kβ

∂Uν
〈Aαβ〉 +

∂kβ

∂Uν

g∑
s=1

es

[
γ δ

α

(〈
T

(s)
β J

(s)
δ

〉 − 〈
T

(s)
β

〉〈
J

(s)
δ

〉)

− 1

2
γ δ

α γ
ζ
β

(〈
J

(s)
δ J

(s)
ζ

〉 − 〈
J

(s)
δ

〉〈
J

(s)
ζ

〉)]

+

〈
�i

Uν

∑
k�0

ω
(k)
ij (ϕ, . . .)ϕ

j

θα,kx

〉
−

g∑
s=1

es

〈
�i

Uν

δH (s)

δϕi(x)
T (s)

α

〉

+
g∑

s=1

esγ
β
α

(〈
�i

Uν

δH (s)

δϕi(x)
J

(s)
β

〉
−

〈
�i

Uν

δH (s)

δϕi(x)

〉 〈
J

(s)
β

〉)
(5.3)

(the functions Aαβ are normalized according to lemma 3);
(II) the forms �2

να(X, Y ),�3
αν(X, Y ) have the order O(1) for ε → 0 on Mε[Ψ(1)];

(III) the form �4
αβ(X, Y ) has the order O(ε) for ε → 0 on Mε[Ψ(1)].

Proof. (I) Let us first rewrite relations (4.8) and (4.10) in the variables θ, X, i.e.

ϕi
θα

∑
k�0

ω
(k)
ij (ϕ, εϕX, . . .)εkϕ

j

θβ ,kX
+

g∑
s=1

es

(
h

(s)

θβ T (s)
α − h

(s)
θα T

(s)
β + ε

(
T (s)

α

)
X
T

(s)
β

)

≡ ∂

∂θγ
Q

γ

αβ(ϕ, εϕX, . . .) + ε
∂

∂X
Aαβ(ϕ, εϕX, . . .) (5.4)

5 We mean here the limit in the sense of functionals
∫

�1
νµ(X, Y )ξν(X)ηµ(Y ) dX dY for any fixed smooth

ξν(X), ηµ(Y ).
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and

−
∫ 2π

0
. . .

∫ 2π

0
Aαβ(ϕ(θ, Y ), εϕY (θ, Y ), . . .)

dmθ

(2π)m

+
∫ 2π

0
. . .

∫ 2π

0

∑
k�1

k∑
p=1

C
p

k (−1)p−1εk−1
(
ϕi

θα (θ, Y )

×ω
(k)
ij (ϕ(θ, Y ), . . .)ϕ

j

θβ ,(k−p)Y
(θ, Y )

)
(p−1)Y

dmθ

(2π)m

− 1

2

∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

es

(
W

(s)
θα (θ, Y )W

(s)

θβ (θ, Y )

−W
(s)
θα (θ, +∞)W

(s)

θβ (θ, +∞)
) dmθ

(2π)m

+
∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

esT
(s)
α (θ, Y )W

(s)

θβ (θ, Y )
dmθ

(2π)m

+
∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

es

(
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
)

× (
W

(s)

θβ (θ, Y ) − T
(s)
β (θ, Y )

) dmθ

(2π)m

≡
∫ 2π

0
. . .

∫ 2π

0
Aβα(ϕ(θ, Y ), εϕY (θ, Y ), . . .)

dmθ

(2π)m

+
1

2

∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

es

[
W

(s)
θα (θ, Y )W

(s)

θβ (θ, Y )

−W
(s)
θα (θ, +∞)W

(s)

θβ (θ, +∞)
] dmθ

(2π)m

−
∫ 2π

0
. . .

∫ 2π

0

g∑
s=1

esW
(s)
θα (θ, Y )T

(s)
β (θ, Y )

dmθ

(2π)m
. (5.5)

We can write on Mε[Ψ(1)]

δϕi(θ, X)

δUν(Y )
= 1

ε
�i

θα

(
θ + θ∗

0(X) +
1

ε
S(X), U(X)

)
ν(X − Y )

∂kα

∂Uν
(Y )

+ �i
(1)θα

(
θ + θ∗

0(X) +
1

ε
S(X),X

)
ν(X − Y )

∂kα

∂Uν
(Y )

+ �i
Uν

(
θ + θ∗

0(X) +
1

ε
S(X), U(X)

)
δ(X − Y )

= 1

ε
ϕi

θα (θ, X)ν(X − Y )
∂kα

∂Uν
(Y ) + �i

Uν

(
θ + θ∗

0(X) +
1

ε
S(X), U(X)

)
δ(X − Y )

and

δϕi(θ, X)

δθ∗α
0 (Y )

= ϕi
θα (θ, X)δ(X − Y ).
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We can then write

�1
νµ(X, Y ) = −

∫
1

ε2

∂kα

∂Uν
(X)ν(X − Z)

∑
k�0

ϕi
θα (θ, Z)ω

(k)
ij (ϕ(θ, Z), . . .)

× εkϕ
j

θβ ,kZ
(θ, Z)ν(Z − Y )

∂kβ

∂Uµ
(Y ) dZ

dmθ

(2π)m

− 1

ε2

∫
∂kα

∂Uν
(X)


ν(X − Y )

∑
k�1

k∑
p=1

C
p

k (−1)p−1εkϕi
θα (θ, Y )

×ω
(k)
ij (ϕ(θ, Y ), . . .)ϕ

j

θβ ,(k−p)Y
(θ, Y )




(p−1)Y

∂kβ

∂Uµ
(Y )

dmθ

(2π)m

+
1

ε

∫
�i

Uν (θ + · · · , U(X))
∑
k�0

εkω
(k)
ij (ϕ(θ, X), . . .)

× [
ϕ

j

θβ (θ, X)ν(X − Y )
]
kX

∂kβ

∂Uµ
(Y )

dmθ

(2π)m

− 1

ε

∫
∂kα

∂Uν
(X)

∑
k�0

(−1)kεk
[
ν(X − Y )ϕi

θα (θ, Y )ω
(k)
ij (ϕ(θ, Y ), . . .)

]
kY

×�
j

Uµ(θ + · · · , U(Y ))
dmθ

(2π)m

+
∫ ∑

k�0

εk�i
Uν (θ + · · · , U(X))ω

(k)
ij (ϕ(θ, X), . . .)

× [
�

j

Uµ(θ + · · · , U(X))δ(X − Y )
]
kX

dmθ

(2π)m

− 1

ε3

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Z)

× [
εW

(s)
θαZ(θ, Z) − εT

(s)
α,Z(θ, Z)

]
ν(Z − W)

[
εW

(s)

θβW
(θ,W) − εT

(s)
β,W (θ,W)

]
× ν(W − Y )

∂kβ

∂Uµ
(Y ) dZ dW

dmθ

(2π)m

+
1

ε2

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)
ν(X − W)

× [
εW

(s)

θβW
(θ,W) − εT

(s)
β,W (θ,W)

]
ν(W − Y )

∂kβ

∂Uµ
(Y )dW

dmθ

(2π)m

− 1

ε2

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Z)

[
εW

(s)
θαZ(θ, Z) − εT

(s)
α,Z(θ, Z)

]
ν(Z − Y )

× δĤ
(s)

δϕj (θ, Y )
�

j

Uµ(θ + · · · , U(Y )) dZ
dmθ

(2π)m
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+
1

ε

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)
ν(X − Y )

× δĤ
(s)

δϕj (θ, Y )
�

j

Uµ(θ + · · · , U(Y ))
dmθ

(2π)m
.

We should now substitute the functions ϕi in the form (5.2) and we are interested here
in the terms of the ε-expansion of �1

νµ(X, Y ) containing 1/ε and omit all the terms of order
O(1) for ε → 0. We can see then that we can omit the differentiation of the function ν(X−Y )

in the second, third and fourth terms of the expression for �1
νµ(X, Y ) since they appear only

in regular terms for ε → 0. By the same reason we can omit the whole fifth term in the same
expression which is regular for ε → 0.

Let us now consider especially the functions W
(s)
θα (θ, X). We first consider the

submanifold M0 and represent the functions ϕ[U,θ∗] in the form

ϕi(θ, X) = �i

(
θ + θ∗

0(X) +
1

ε
S(X), U(X)

)
. (5.6)

Let us recall the commuting flows (3.16) for the system (3.1) and the corresponding
relations (3.17) for the functions h(s)(ϕ, ϕx, . . .). We can write in the new ‘slow’ variables
X, T ,

εϕi
T α = Qi

(α)(ϕ, εϕX, . . .)

and relations (3.17) now become

h
(s)
T α ≡ ∂XJ (s)

α (ϕ, εϕX, . . .).

Let us represent the operator ε∂X on the functions (5.6) in the following form,

ε∂X = ∂I
X + ε∂II

X

where

∂I
X = Sα

X

∂

∂θα
= kα(X)

∂

∂θα
, ∂II

X = Uν
X

∂

∂Uν
+ θ∗α

0X

∂

∂θα
.

We can write on the manifold M0

ω
η

(α)(U(X))
∂

∂θη
h(s)

(
ϕ, ∂I

Xϕ, . . .
) = ∂I

XJ (s)
α

(
ϕ, ∂I

Xϕ, . . .
)

or using relations (3.19),

∂

∂θα
h(s)(ϕ, ∂I

Xϕ, . . .) = γ δ
α (U(X))∂I

XJ
(s)
δ (ϕ, ∂I

Xϕ, . . .)

= γ δ
α (U(X))

[
ε∂XJ

(s)
δ (ϕ, ∂I

Xϕ, . . .) − ε∂II
X J

(s)
δ (ϕ, ∂I

Xϕ, . . .)
]
.

We have then on M0

h
(s)
θα (ϕ, εϕX, . . .) = ε

[
γ δ

α (U)J
(s)
δ (ϕ, ∂I

Xϕ, . . .)
]
X

− ε
[(

γ δ
α (U)

)
X
J

(s)
δ (ϕ, ∂I

Xϕ, . . .) + γ δ
α (U)∂II

X J
(s)
δ (ϕ, ∂I

Xϕ, . . .)
]

+ ε
∂

∂θα
δh(s)(ϕ, . . .) + O(ε2) (5.7)

where

δh(s)(ϕ, . . .) = ∂h(s)

∂ϕi
x

(
ϕ, ∂I

Xϕ, . . .
)
∂II
X ϕi +

∂h(s)

∂ϕi
xx

(
ϕ, ∂I

Xϕ, . . .
)(

∂I
X∂II

X + ∂II
X ∂I

X

)
ϕi + · · ·

and the functions ϕ(θ, X) have the form (5.6).
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Let us now come back to the submanifolds Mε[Ψ(1)] and consider the functions ϕ[U,θ∗]

having the form (5.2). We can see that relations (5.7) can then be rewritten in the form

h
(s)
θα (ϕ, εϕX, . . .) = ε

[
γ δ

α (U)J
(s)
δ (ϕ, ∂I

Xϕ, . . .)
]
X

− ε
[(

γ δ
α (U)

)
X
J

(s)
δ

(
ϕ, ∂I

Xϕ, . . .
)

+ γ δ
α (U)∂II

X J
(s)
δ

(
ϕ, ∂I

Xϕ, . . .
)]

+ ε
∂

∂θα
δ̃h

(s)
(ϕ, . . .) + O(ε2) (5.8)

where

δ̃h
(s) = δh(s) +

∂h(s)

∂ϕi
�i

(1) +
∂h(s)

∂ϕi
x

ε�i
(1)X + · · · .

We can now write on Mε[Ψ(1)]

W
(s)
θα (θ, X) = 1

ε

∫ +∞

−∞
ν(X − W)h

(s)
θα (ϕ,W) dW

= γ δ
α (U(X))J

(s)
δ

(
ϕ, ∂I

Xϕ, . . .
)

−
∫ +∞

−∞
ν(X − W)∂II

W

(
γ δ

α (U(W))J
(s)
δ

(
ϕ, ∂I

Wϕ, . . .
))

dW

+
∫ +∞

−∞
ν(X − W)

∂

∂θα
δ̃h

(s)
(θ,W) dW + O(ε) (5.9)

(we use here the operator ∂II
W also as ∂W for the functions γ δ

α (U) depending on U only and
assume the normalization of J

(s)
δ (ϕ, . . .) such that J

(s)
δ (θ,±∞) = 0 on M).

We can see that the quantities W
(s)
θα have the order O(1) for ε → 0 and the fixed coordinates

U(x), θ0(X) on Mε[Ψ(1)].
We evidently have also∫ 2π

0
. . .

∫ 2π

0
W

(s)
θα (θ, X)

dmθ

(2π)m
= 0. (5.10)

Let us now consider in the main order of ε the arbitrary value of the form∫ 2π

0
. . .

∫ 2π

0
V (θ, X)W

(s)
θα (θ, Y )

dmθ

(2π)m

where V (θ, X) is arbitrary smooth and periodic w.r.t. θ function (we can have in particular
X = Y ).

We have∫ 2π

0
. . .

∫ 2π

0
V (θ, X)W

(s)
θα (θ, Y )

dmθ

(2π)m
= γ δ

α (Y )

∫ 2π

0
. . .

∫ 2π

0
V (θ, X)J

(s)
δ (θ, Y )

dmθ

(2π)m

−
∫ 2π

0
. . .

∫ 2π

0
V (θ, X)

∫ +∞

−∞
ν(Y − W)

× ∂II
W

(
γ δ

α (W)J
(s)
δ (ϕ, ∂I

Wϕ, . . .)
)

dW
dmθ

(2π)m

+
∫ 2π

0
. . .

∫ 2π

0
V (θ, X)

∫ +∞

−∞
ν(Y − W)

∂

∂θα

× δ̃h
(s)

(ϕ(θ,W), . . .) dW
dmθ

(2π)m
+ O(ε). (5.11)
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The expressions J
(s)
δ (ϕ(θ,W), . . .) and δh(s)(ϕ(θ,W), . . .) are rapidly oscillating

functions of W due to the fast change of the phase according to (5.2). It is not difficult
to show that in the main order of ε expression (5.11) is given by the independent integration
w.r.t. θ at the points X and W integrated then w.r.t. W for smooth generic S(W). We can see
then that the third term in (5.11) disappears in fact in the main order of ε. After that we can
also replace in the main order of ε the integration w.r.t. θ just by averaging on the family �

in the first two terms of (5.11) since the εΨ(1)-corrections give there just the values of order
O(ε). We can then write on Mε[Ψ(1)] in the main order of ε

∫ 2π

0
. . .

∫ 2π

0
V (θ, X)W

(s)
θα (θ, Y )

dmθ

(2π)m
= γ δ

α (Y )〈V (θ, X)J
(s)
δ (θ, Y )〉

− 〈V (θ, X)〉
∫ +∞

−∞
ν(Y − W)∂W

(
γ δ

α (W)〈J (s)
δ (θ,W)〉) dW + o(1)

= γ δ
α (Y )

[〈V (θ, X)J
(s)
δ (θ, Y )〉 − 〈V (θ, X)〉〈J (s)

δ (θ, Y )〉] + o(1). (5.12)

We can also write the following relation

∫ 2π

0
. . .

∫ 2π

0
V (θ, X)W

(s)
θα (θ,±∞)

dmθ

(2π)m
= o(1)

for ε → 0 which follows from the formula (5.12) when we use J
(s)
δ (θ,±∞) = 0 on M.

Looking now at the expression for �1
νµ(X, Y ) we can see that all the terms containing

values like W
(s)
θα (θ,±∞) can actually be omitted in the main (1/ε) order of �1

νµ(X, Y )

according to the remark above.
Using the formula (5.4) we can write now

− 1

ε2

∫
∂kα

∂Uν
(X)ν(X − Z)

∑
k�0

ϕi
θα (θ, Z)εkω

(k)
ij (ϕ(θ, Z), . . .)

×ϕ
j

θβ ,kZ
(θ, Z)ν(Z − Y )

∂kβ

∂Uµ
(Y ) dZ

dmθ

(2π)m

− 1

ε2

∫
∂kα

∂Uν
(X)ν(X − Z)

×
g∑

s=1

es

[
h

(s)

θβ (θ, Z)T (s)
α (θ, Z) − h

(s)
θα (θ, Z)T

(s)
β (θ, Z)

+ εT
(s)
α,Z(θ, Z)T

(s)
β (θ, Z)

]
ν(Z − Y )

∂kβ

∂Uµ
(Y ) dZ

dmθ

(2π)m

= − 1

ε

∫
∂kα

∂Uν
(X)ν(X − Z)[Aαβ(ϕ(θ, Z), . . .)]Z

× ν(Z − Y )
∂kβ

∂Uµ
(Y ) dZ

dmθ

(2π)m

= − 1

ε

∫
∂kα

∂Uν
(X)Aαβ(ϕ(θ, Z), . . .)ν(X − Y )

∂kβ

∂Uµ
(Y )

dmθ

(2π)m

+
1

ε

∫
∂kα

∂Uν
(X)ν(X − Y )Aαβ(ϕ(θ, Y ), . . .)

∂kβ

∂Uµ
(Y )

dmθ

(2π)m
.
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We can also use the identity

W
(s)
θα,Z(θ, Z)W

(s)

θβ (θ, Z) = 1
2

(
W

(s)
θα W

(s)

θβ

)
Z

+ 1
2

(
W

(s)
Z W

(s)

θβ

)
θα − 1

2

(
W

(s)
Z W

(s)
θα

)
θβ .

Using now (5.5) and all the remarks above we can write (after some calculation)

�1
νµ(X, Y ) = −1

ε

∫
∂kα

∂Uν
(X)Aαβ(ϕ(θ, X), . . .)ν(X − Y )

∂kβ

∂Uµ
(Y )

dmθ

(2π)m

+
1

ε

∫
∂kα

∂Uν
(X)

g∑
s=1

esT
(s)
α (θ, X)W

(s)

θβ (θ, X)ν(X − Y )
∂kβ

∂Uµ
(Y )

dmθ

(2π)m

− 1

ε

∫
∂kα

∂Uν
(X)

g∑
s=1

es

1

2
W

(s)
θα (θ, X)W

(s)

θβ (θ, X)ν(X − Y )
∂kβ

∂Uµ
(Y )

dmθ

(2π)m

− 1

ε

∫
∂kα

∂Uν
(X)ν(X − Y )Aβα(ϕ(θ, Y ), . . .)

∂kβ

∂Uµ
(Y )

dmθ

(2π)m

+
1

ε

∫
∂kα

∂Uν
(X)ν(X − Y )

g∑
s=1

esT
(s)
β (θ, Y )W

(s)
θα (θ, Y )

∂kβ

∂Uµ
(Y )

dmθ

(2π)m

− 1

ε

∫
∂kα

∂Uν
(X)ν(X − Y )

g∑
s=1

es

1

2
W

(s)
θα (θ, Y )W

(s)

θβ (θ, Y )
∂kβ

∂Uµ
(Y )

dmθ

(2π)m

+
1

ε

∫
�i

Uν (θ + · · · , U(X))
∑
k�0

ω
(k)
ij (ϕ(θ, X), . . .)εk

×�i
θβ,kX

(θ + · · · , U(X))ν(X − Y )
∂kβ

∂Uµ
(Y )

dmθ

(2π)m

− 1

ε

∫
∂kα

∂Uν
(X)ν(X − Y )

×
∑
k�0

(−1)kεk
[
�i

θα (θ + . . . , U(Y ))ω
(k)
ij (ϕ(θ, Y ), . . .)

]
kY

×�
j

Uµ(θ + · · · , U(Y ))
dmθ

(2π)m
+

1

ε

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)

× (
W

(s)

θβ (θ, X) − T
(s)
β (θ, X)

)
ν(X − Y )

∂kβ

∂Uµ
(Y )

dmθ

(2π)m

+
1

ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Y )

(
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
) δĤ

(s)

δϕj (θ, Y )

×�
j

Uµ(θ + · · · , U(Y ))
dmθ

(2π)m

+
1

ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)

(
W

(s)
θα (θ, X) − T (s)

α (θ, X)
)
ν(X − Y )

× (
W

(s)

θβ (θ, Y ) − T
(s)
β (θ, Y )

) ∂kβ

∂Uµ
(Y )

dmθ

(2π)m

− 1

ε

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)
ν(X − Y )
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× (
W

(s)

θβ (θ, Y ) − T
(s)
β (θ, Y )

) ∂kβ

∂Uµ
(Y )

dmθ

(2π)m

− 1

ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)

(
W

(s)
θα (θ, X) − T (s)

α (θ, X)
)
ν(X − Y )

× δĤ
(s)

δϕj (θ, Y )
�

j

Uµ(θ + · · · , U(Y ))
dmθ

(2π)m

+
1

ε

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)
ν(X − Y )

× δĤ
(s)

δϕj (θ, Y )
�

j

Uµ(θ + · · · , U(Y ))
dmθ

(2π)m
+ O(1).

We will now investigate the weak limit �1(wl)
νµ (X, Y ) of the form �1

νµ(X, Y ), i.e. the limit
in the sense of the integrals∫ +∞

−∞

∫ +∞

−∞
ξν(X)�1

νµ(X, Y )ηµ(Y ) dX dY

for fixed (smooth) ξν(X) and ηµ(Y ).
We will use first the formulae (5.9) for the values like W

(s)
θα ,W

(s)

θβ in the expression above.
It is easy to see then that �1

νµ(X, Y ) actually contains just the terms of order 1/ε in the main
part.

We note after this that the integration w.r.t. θ in the last four terms can be done
independently at the points X and Y in the weak limit for the rapidly oscillating functions
of X and Y in full analogy with the remark before the formula (5.12). Using then the formula
(5.10) we see that values like W

(s)
θα ,W

(s)

θβ can actually be omitted in the order 1/ε for the weak
limit of the last four terms of �1

νµ(X, Y ). We can also replace in the same terms the integration
w.r.t. θ just by averaging on the quasiperiodic solutions in the main (1/ε) order of ε.

It is not difficult to also prove the formula

∂〈h(s)〉
∂Uν

(X) =
〈

δĤ
(s)

δϕi(θ, X)
�i

Uν (θ, X)

〉
+

∂kα

∂Uν
(X)〈T (s)

α (θ, X)〉 (5.13)

according to the definition (4.7) of the functions T (s)
α .

Using the formula (5.13) and the remarks above we can see then that the last four terms
in the expression for �1

νµ(X, Y ) give the terms

1

ε

g∑
s=1

es

∂〈h(s)〉
∂Uν

(X)ν(X − Y )
∂〈h(s)〉
∂Uµ

(Y ) +
o(1)

ε

for �1(wl)
νµ (X, Y ).

If we now introduce the functions

τβν = ∂kα

∂Uν

[
−〈Aαβ〉 +

g∑
s=1

es

〈
T (s)

α W
(s)

θβ

〉 − 1

2

g∑
s=1

es

〈
W

(s)
θα W

(s)

θβ

〉]

+

〈
�i

Uν

∑
k�0

ω
(k)
ij (ϕ, . . .)ϕ

j

θβ ,kx

〉
+

〈
�i

Uν

δH (s)

δϕi(x)

(
W

(s)

θβ − T
(s)
β

)〉
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and use the formulae (5.12) we can see that the form �1(wl)
νµ (X, Y ) can be written as

�1(wl)
νµ (X, Y ) = 1

ε

m∑
α=1

(
∂kα

∂Uν
(X)ν(X − Y )ταµ(Y ) + ταν(X)ν(X − Y )

∂kα

∂Uµ
(Y )

)

+
1

ε

g∑
s=1

es

∂〈h(s)〉
∂Uν

(X)ν(X − Y )
∂〈h(s)〉
∂Uµ

(Y ) +
o(1)

ε

where the values ταν(U) are given by the formulae (5.3) for the values ∂Iα/∂Uν .
Let us now prove that ταν(U) can in fact be represented as the derivatives ∂Iα/∂Uν for

some functions Iα(U). We will assume as we stated already that the gradients dk1, . . . , dkm

are linearly independent on MN . From the closeness of the form �rest it follows that the form
�1(wl)

νµ (X, Y ) is also closed on M. It is easy to see that the part

1

ε

g∑
s=1

es

∂〈h(s)〉
∂Uν

(X)ν(X − Y )
∂〈h(s)〉
∂Uµ

(Y )

is closed according to theorem 2. We then get that the form

1

ε

m∑
α=1

(
∂kα

∂Uν
(X)ν(X − Y )ταµ(Y ) + ταν(X)ν(X − Y )

∂kα

∂Uµ
(Y )

)

should also be closed on M. Using theorem 2 it is not difficult to see then that we should have
ταν(U) = ∂Iα/∂Uν for some functions Iα(U) in this case.

(II) We have �2
να(X, Y ) = −�3

αν(Y,X) and

�2
να(X, Y ) =

∫ (
−1

ε

∂kγ

∂Uν
(X)ν(X − Z)ϕi

θγ (θ, Z) + δ(X − Z)�i
Uν (θ + · · · , U(Z))

)

× �̂ij (θ, θ′, Z,W)ϕ
j

θα (θ
′,W)δ(W − Y )

dmθ

(2π)m

dmθ ′

(2π)m
dZ dW.

It is easy to see that we can omit all the terms of order O(1) in this expression keeping
in mind the statement of the theorem. In particular, we can omit the differentiation of the
function δ(W − Y ) in the local part and write

�2
να(X, Y ) = −1

ε

∫
∂kγ

∂Uν
(X)ν(X − Y )ϕi

θγ (θ, Y )

×
∑
k�0

ω
(k)
ij (ϕ(θ, Y ), . . .)εkϕ

j

θα,kY (θ, Y )
dmθ

(2π)m

−
∫ g∑

s=1

es

∂kγ

∂Uν
(X)ν(X − Z)

(
W

(s)
θγ Z(θ, Z) − T

(s)
γ,Z(θ, Z)

)

× ν(Z − Y )
(
W

(s)
θαY (θ, Y ) − T

(s)
α,Y (θ, Y )

) dmθ

(2π)m
dZ

+
∫ g∑

s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)
ν(X − Y )

× (
W

(s)
θαY (θ, Y ) − T

(s)
α,Y (θ, Y )

) dmθ

(2π)m
+ O(1)

= −
∫

1

ε

∂kγ

∂Uν
(X)ν(X − Y )ϕi

θγ (θ, Y )
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×
∑
k�0

ω
(k)
ij (ϕ(θ, Y ), . . .)εkϕ

j

θα,kY (θ, Y )
dmθ

(2π)m

− ∂

∂Y

∫ g∑
s=1

es

∂kγ

∂Uν
(X)ν(X − Z)

(
W

(s)
θγ Z(θ, Z) − T

(s)
γ,Z(θ, Z)

)

× ν(Z − Y )
(
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
) dmθ

(2π)m
dZ

−
∫ g∑

s=1

es

∂kγ

∂Uν
(X)ν(X − Y )

(
W

(s)
θγ Y (θ, Y ) − T

(s)
γ,Y (θ, Y )

)

× (
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
) dmθ

(2π)m
+

∂

∂Y

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

× δĤ
(s)

δϕi(θ, X)
ν(X − Y )

(
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
) dmθ

(2π)m

+
∫ g∑

s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)

× (
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
)
δ(X − Y )

dmθ

(2π)m
+ O(1).

Using the relations W
(s)
θα (θ, Y ) ∼ O(1), ε → 0 we can now omit the last two terms. The

second term can be rewritten in the form

− ∂

∂Y

∫ g∑
s=1

es

∂kγ

∂Uν
(X)

(
W

(s)
θγ (θ, X) − T (s)

γ (θ, X) − 1

2
− W

(s)
θγ (θ, +∞)

)

× ν(X − Y )
(
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
) dmθ

(2π)m

+
∂

∂Y

∫ g∑
s=1

es

∂kγ

∂Uν
(X)ν(X − Y )

(
W

(s)
θγ (θ, Y ) − T (s)

γ (θ, Y )
)

× (
W

(s)
θα (θ, Y ) − T (s)

α (θ, Y )
) dmθ

(2π)m

and can be omitted by the same reason.
So we have

�2
να(X, Y ) = −1

ε

∫
∂kγ

∂Uν
(X)ν(X − Y )ϕi

θγ (θ, Y )

×
∑
k�0

ω
(k)
ij (ϕ(θ, Y ), . . .)εkϕ

j

θα,kY (θ, Y )
dmθ

(2π)m

−
∫ g∑

s=1

es

∂kγ

∂Uν
(X)ν(X − Y )

(
1

2

(
W

(s)
Y (θ, Y )W

(s)
θα (θ, Y )

)
θγ

− 1

2

(
W

(s)
θγ (θ, Y )W

(s)
Y (θ, Y )

)
θα +

1

2

(
W

(s)
θγ (θ, Y )W

(s)
θα (θ, Y )

)
Y

− (
T (s)

γ (θ, Y )W
(s)
θα (θ, Y )

)
Y

+
1

ε
h

(s)
θα (θ, Y )T (s)

γ (θ, Y )

− 1

ε
h

(s)
θγ (θ, Y )T (s)

α (θ, Y ) + T
(s)
γ,Y (θ, Y )T (s)

α (θ, Y )
) dmθ

(2π)m
+ O(1). (5.14)



672 A Ya Maltsev

We can now omit the total derivatives w.r.t. θγ and θα in the second integral. The term

−
∫ g∑

s=1

es

∂kγ

∂Uν
(X)ν(X − Y )

[
1

2

(
W

(s)
θγ (θ, Y )W

(s)
θα (θ, Y )

)
Y

− (
T (s)

γ (θ, Y )W
(s)
θα (θ, Y )

)
Y

]
dmθ

(2π)m

can be written as

− ∂

∂Y

∫ g∑
s=1

es

∂kγ

∂Uν
(X)ν(X − Y )

×
[

1

2
W

(s)
θγ (θ, Y )W

(s)
θα (θ, Y ) − T (s)

γ (θ, Y )W
(s)
θα (θ, Y )

]
dmθ

(2π)m

−
∫ g∑

s=1

es

∂kγ

∂Uν
(X)δ(X − Y )

×
[

1

2
W

(s)
θγ (θ, Y )W

(s)
θα (θ, Y ) − T (s)

γ (θ, Y )W
(s)
θα (θ, Y )

]
dmθ

(2π)m

and has also the order O(1) for ε → 0.
The rest of expression (5.14) can now be written according to (5.4) as

−1

ε

∫
∂kγ

∂Uν
(X)ν(X − Y )

[
∂

∂θβ
Qβ

γα(ϕ(θ, Y ), . . .) + ε
∂

∂Y
Aγα(ϕ(θ, Y ), . . .)

]
dmθ

(2π)m

+ O(1) = O(1).

So we get part (II) of the theorem.
(III) We have

�4
αβ(X, Y ) =

∫
ϕi

θα (θ, X)
∑
k�0

ω
(k)
ij (ϕ(θ, X), · · ·)εkϕ

j

θβ ,kX
(θ, X)

dmθ

(2π)m
δ(X − Y )

+ ε

∫ g∑
s=1

es

(
W

(s)
θαX(θ, X) − T

(s)
α,X(θ, X)

)
ν(X − Y )

× (
W

(s)

θβY
(θ, Y ) − T

(s)
β,Y (θ, Y )

) dmθ

(2π)m
δ(X − Y ) + O(ε)

=
∫

ϕi
θα (θ, X)

∑
k�0

ω
(k)
ij (ϕ(θ, X), . . .)εkϕ

j

θβ ,kX
(θ, X)

dmθ

(2π)m
δ(X − Y )

+ ε
∂2

∂X∂Y

∫ g∑
s=1

es

(
W

(s)
θα (θ, X) − T (s)

α (θ, X)
)
ν(X − Y )

× (
W

(s)

θβ (θ, Y ) − T
(s)
β (θ, Y )

) dmθ

(2π)m
+ ε

∫ g∑
s=1

es

(
W

(s)
θα (θ, X) − T (s)

α (θ, X)
)

× (
W

(s)

θβ (θ, X) − T
(s)
β (θ, X)

) dmθ

(2π)m
δ′(X − Y )

+ ε

∫ g∑
s=1

es

(
1

2

(
W

(s)
X (θ, X)W

(s)

θβ (θ, X)
)
θα − 1

2

(
W

(s)
θα (θ, X)W

(s)
X (θ, X)

)
θβ

+
1

2

(
W

(s)
θα (θ, X)W

(s)

θβ (θ, X)
)
X

− (
T (s)

α (θ, X)W
(s)

θβ (θ, X)
)
X
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+
1

ε
h

(s)

θβ (θ, X)T (s)
α (θ, X) − 1

ε
h

(s)
θα (θ, X)T

(s)
β (θ, X)

+ T
(s)
α,X(θ, X)T

(s)
β (θ, X))

dmθ

(2π)m
δ(X − Y ) + O(ε).

Using the same arguments as before we can now write

�4
αβ(X, Y ) =

∫ [
∂

∂θγ
Q

γ

αβ(θ, X)δ(X − Y ) + ε
(
Aαβ(θ, X)

)
X

δ(X − Y )

]
dmθ

(2π)m
+ O(ε).

So we get part (III) of the theorem. �

Definition 4. We call the form

�av
νµ(X, Y ) =

m∑
α=1

(
∂kα

∂Uν
(X)ν(X − Y )

∂Iα

∂Uµ
(Y ) +

∂Iα

∂Uν
(X)ν(X − Y )

∂kα

∂Uµ
(Y )

)

+
g∑

s=1

es

∂〈h(s)〉
∂Uν

(X)ν(X − Y )
∂〈h(s)〉
∂Uµ

(Y ) (5.15)

the averaging of the form (2.3) on the space of m-phase solutions of system (3.1).
We call the functions Iα(U) defined through the formulae (5.3) the action variables

conjugated with the wave numbers kα(U).

We will now prove that the symplectic structure (5.15) can be considered actually as the
symplectic structure for the Whitham system (3.15) while the value

∫ 〈h〉(X) dX plays the role
of the Hamiltonian function for this system. Let us prove here the following theorem:

Theorem 5. If the functions

φi
(1)(θ, X, T , ε) = �i

(
S(X, T )

ε
+ θ∗(X, T ) + θ, U(X, T )

)
+ ε�i

(1)

(
S(X, T )

ε
+ θ, X, T

)
satisfy the system (3.9) modulo the terms O(ε2) then the following relation is true∫ +∞

−∞
�av

νµ(X, Y )U
µ

T (Y ) dY = ∂〈h〉
∂Uν

(X). (5.16)

Proof. Let us prove first that under the conditions of the theorem the following relations hold
in the weak limit:∫ (

−1

ε

∂kα

∂Uν
(X)ν(X − Z)φi

(1)θα (θ, Z, ε) + δ(X − Z)�i
Uν (θ + · · · , U(Z))

)
× �̂ij [φ(1)](θ, θ′, Z,W)

(
φ

j

(1)θ ′β (θ
′,W, ε)

(
S

β

T (W) + εθ
∗β

T (W)
)

+ ε�
j

Uµ(θ
′ + · · · , U(W))U

µ

T (W)
)

dZ dW
dmθ

(2π)m

dmθ ′

(2π)m

=
∫ (

−1

ε

∂kα

∂Uν
(X)ν(X − Z)φi

(1)θα (θ, Z, ε) + δ(X − Z)�i
Uν (θ + · · · , U(Z))

)
× δĤ

δϕi(θ, Z)

(
φi

(1)(θ, Z, ε), . . .
)

dZ
dmθ

(2π)m
+ o(1) (5.17)

ε → 0.
It is easy to see that the expression

φ
j

(1)θ ′β (θ
′,W, ε)

(
S

β

T (W) + εθ
∗β

T (W)
)

+ ε�
j

Uµ(θ
′ + · · · , U(W))U

µ

T (W)

actually gives the value εφ
j

(1)T (θ′,W, ε) up to the terms of order O(ε2).
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We can then write

φ
j

(1)θ ′β (θ
′,W, ε)

(
S

β

T (W) + εθ
∗β

T (W)
)

+ ε�
j

Uµ(θ
′ + · · · , U(W))U

µ

T (W)

= Qj(φ(1), εφ(1)W , . . .) + ε2Gj(θ′ + · · · ,W)

where Gj(θ′,W) are some local expressions of Φ(θ′, U(W)),Ψ(1)(θ
′,W) and their

derivatives.
Let us start with the nonlocal part of the form �̂ij (θ, θ′, Z,W). First we note that∫ (
−1

ε

∂kα

∂Uν
(X)ν(X − Z)φi

(1)θα (θ, Z, ε) + δ(X − Z)�i
Uν (θ + · · · , U(Z))

)

× 1

ε

g∑
s=1

es

δĤ
(s)

δϕi(θ, Z)
[φ(1)]ν(Z − W)δ(θ − θ′)

δĤ
(s)

δϕj (θ′,W)
[φ(1)]

× ε2Gj(θ′ + · · · ,W) dZ dW
dmθ

(2π)m

dmθ ′

(2π)m

=
∫ (

− ∂kα

∂Uν
(X)ν(X − Z)�i

(0)θα (θ + · · · , Z)

)

×
g∑

s=1

es

δĤ
(s)

δϕi(θ, Z)
[Ψ(0)]ν(Z − W)

δĤ
(s)

δϕj (θ,W)
[Ψ(0)]

×Gj(θ + · · · ,W) dZ dW
dmθ

(2π)m
+ O(ε).

Using the same arguments as before we note that the rapidly oscillating functions of Z
and W should be averaged in the weak limit separately in the main order of ε (for generic
S(Z), S(W)) and besides that

〈�i
(0)θα (θ + · · · , Z)

δĤ
(s)

δϕi(θ, Z)
[Ψ(0)]〉 =

〈
h

(s)
θα − ε

∂

∂X
T (s)

α

〉
= −ε

∂

∂X

〈
T (s)

α

〉 = O(ε).

We can then claim that the terms consisting of Gj can actually be omitted since they affect
(5.17) neither in the nonlocal nor in the local parts of �̂ij .

Let us now use the relations

δĤ
(s)

δϕj (θ′,W)
εϕ

j

T (θ′,W) = δĤ
(s)

δϕj (θ′,W)
Qj(ϕ, εϕW, . . .) ≡ ε∂W J̄

(s)
(ϕ, εϕW, . . .)

which follows from (3.3) (where the functions J̄
(s) are in general different from J (s) introduced

in (3.3)).
Using the identity

∑
k�0

ω
(k)
ij (θ, Z)εk ∂k

∂Zk
Qj (θ, Z) +

g∑
s=1

es

δĤ
(s)

δϕi(θ, Z)
J̄

(s)
(θ, Z) ≡ δĤ

δϕi(θ, Z)

(which is the definition of the symplectic structure of the system (3.1)) we get (5.17).
Now using the relation

S
β

T (W) =
∫ +∞

−∞
ν(W − Y )

∂kβ

∂Uµ
(Y )U

µ

T (Y ) dY

we can see that the left-hand side of (5.17) can be written as

ε

∫ +∞

−∞
�1

νµ(X, Y )U
µ

T (Y ) dY + ε

∫ +∞

−∞
�2

νβ(X, Y )θ
∗β

T (Y ) dY
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where �1
νµ(X, Y ),�2

νβ(X, Y ) are the parts of the restriction of the form �̂ij on the manifold
Mε[Ψ(1)] introduced in theorem 4.

Using relation (4.6) and the integration by parts (w.r.t. Z) in the right-hand side of (5.17)
we can see that the right-hand side of (5.17) can be written as

∂kα

∂Uν
(X)〈Tα(θ, X)〉 +

〈
δĤ

δϕi(θ, X)
�i

Uν (θ, X)

〉
+ O(ε)

where Tα is the analogue of the functions T (s)
α for the functional Ĥ . So we have that the

right-hand side of (5.17) is equal to ∂〈h〉/∂Uν(X) + O(ε) according to (5.13).
If we now consider the weak limit of relation (5.17) and use the parts (I) and (II) of

theorem 4 we get relation (5.16) in the main (O(1)) order of ε. �

As we already stated previously, we can consider the system (5.16) as the Whitham system
for (3.1) in the generic situation.

6. The weakly nonlocal 1-forms and the averaging of the weakly nonlocal
Lagrangian functions

Let us consider now the 1-forms ωi[ϕ](x) on the space of functions ϕi(x), i = 1, . . . , n having
the form

ωi[ϕ](x) = ci(ϕ, ϕx, . . .) − 1

2

g∑
s=1

es

δH (s)

δϕi(x)

∫ +∞

−∞
ν(x − y)h(s)(ϕ, ϕy, · · ·) dy (6.1)

where H(s)[ϕ] = ∫ +∞
−∞ h(s)(ϕ, ϕx, . . .) dx.

We can see that the forms (6.1) have the purely local part and the nonlocal ‘tail’ of the
fixed form which we will call weakly nonlocal in this situation. We will call the form ωi[ϕ](x)

purely local if it has the form

ωi[ϕ](x) = ci(ϕ, ϕx, . . .)

for some functions ci(ϕ, ϕx, . . .).
We call the weakly nonlocal form (6.1) purely nonlocal if

ωi[ϕ](x) = −1

2

g∑
s=1

es

δH (s)

δϕi(x)

∫ +∞

−∞
ν(x − y)h(s)(ϕ, ϕy, . . .) dy.

The action of the forms ωi[ϕ](x) on the ‘tangent vectors’ ξ i[ϕ](x) is defined in the natural
way

(ω, ξ)[ϕ] =
∫ +∞

−∞
ωi[ϕ](x)ξ i[ϕ](x) dx.

The forms (6.1) are closely connected with the weakly nonlocal 2-forms (2.3). Namely,
let us consider the external derivative of the form ωi[ϕ](x):

[dω]ij (x, y) = δωj [ϕ](y)

δϕi(x)
− δωi[ϕ](x)

δϕj (y)
.

Lemma 5. The external derivative [dω]ij (x, y) is the closed 2-form having the form (2.3)
with some local functions ω

(k)
ij (ϕ, ϕx, . . .).
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Proof. First we note that the closeness of dω is a trivial fact since dω is exact. It is easy to
see that the derivative of the local part of ωi can be written as

∂cj

∂ϕi
(ϕ, ϕy, . . .)δ(y − x) +

∂cj

∂ϕi
y

(ϕ, ϕy, . . .)δ
′(y − x) + · · ·

− ∂ci

∂ϕj
(ϕ, ϕx, . . .)δ(x − y) − ∂ci

∂ϕ
j
x

(ϕ, ϕx, . . .)δ
′(x − y) − · · ·

and is a purely local 2-form.
The derivative of the nonlocal part of ωi can be written as

−1

2

g∑
s=1

es

δ2H(s)

δϕi(x)δϕj (y)

∫ +∞

−∞
ν(y − z)h(s)(ϕ, ϕz, . . .) dz

− 1

2

g∑
s=1

es

δH (s)

δϕj (y)

∫ +∞

−∞
ν(y − z)

δh(s)(ϕ, ϕz, . . .)

δϕi(x)
dz

+
1

2

g∑
s=1

es

δ2H(s)

δϕj (y)δϕi(x)

∫ +∞

−∞
ν(x − z)h(s)(ϕ, ϕz, . . .) dz

+
1

2

g∑
s=1

es

δH (s)

δϕi(x)

∫ +∞

−∞
ν(x − z)

δh(s)(ϕ, ϕz, . . .)

δϕj (y)
dz.

We have

δH (s)

δϕi(x)
= ∂h(s)

∂ϕi
(x) − ∂

∂x

∂h(s)

∂ϕi
x

(x) + · · ·

and

δ2H(s)

δϕi(x)δϕj (y)
= δ2H(s)

δϕj (y)δϕi(x)

for smooth functions h(s)(ϕ, ϕx, . . .).
We also have

δ2H(s)

δϕi(x)δϕj (y)
= δ2H(s)

δϕj (y)δϕi(x)
=

∑
k�0

A
(s)k
ij (ϕ, ϕx, . . .)δ

(k)(x − y)

for some local functions A
(s)k
ij (ϕ, ϕx, . . .).

Using the formulae

δ(k)(x − y)ν(y − z) = δ(k)(x − y)ν(x − z) +
k∑

p=1

C
p

k δ(k−p)(x − y)δ(p−1)(x − z)

we can then write

−1

2

g∑
s=1

es

δ2H(s)

δϕi(x)δϕj (y)

∫ +∞

−∞
ν(y − z)h(s)(ϕ, ϕz, . . .) dz

+
1

2

g∑
s=1

es

δ2H(s)

δϕj (y)δϕi(x)

∫ +∞

−∞
ν(x − z)h(s)(ϕ, ϕz, . . .) dz
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= − 1

2

g∑
s=1

es

∑
k�1

A
(s)k
ij (ϕ, ϕx, . . .)

×
k∑

p=1

C
p

k (h(s)(ϕ, ϕx, . . .))(p−1)xδ
(k−p)(x − y)

which is a local expression.
Now we have∫ +∞

−∞
ν(y − z)

δh(s)(ϕ, ϕz, . . .)

δϕi(x)
dz

=
∫ +∞

−∞
ν(y − z)

(
∂h(s)

∂ϕi
(z)δ(z − x) +

∂h(s)

∂ϕi
z

(z)δ′(z − x) + . . .

)
dz

=
∑
p�0

(−1)p

[
ν(y − x)

∂h(s)

∂ϕi
px

(x)

]
px

= ν(y − x)
δH(s)

δϕi(x)
+ (local part).

Also ∫ +∞

−∞
ν(x − z)

δh(s)(ϕ, ϕz, . . .)

δϕj (y)
dz = ν(x − y)

δH (s)

δϕj (y)
+ (local part).

We have finally

[dω]ij (x, y) = −1

2

g∑
s=1

es

δH (s)

δϕj (y)
ν(y − x)

δH (s)

δϕi(x)

+
1

2

g∑
s=1

es

δH (s)

δϕi(x)
ν(x − y)

δH (s)

δϕj (y)
+ (local part)

=
g∑

s=1

es

δH (s)

δϕi(x)
ν(x − y)

δH (s)

δϕj (y)
+ (local part). �

It is not difficult to prove also (using the analogous statement for purely local symplectic
structures) that every closed 2-form (2.3) can be locally represented as the external derivative
of some 1-form (6.1) on the space ϕ(x).

We will give now the procedure for averaging 1-forms (6.1) connected with the averaging
of the symplectic structures (2.3). Namely, we will assume now that the form �ij (x, y) is
represented as the external derivative of the form (6.1). The corresponding procedure of
averaging of the form (6.1) should then give the weakly nonlocal 1-form of ‘hydrodynamic
type’ which is connected with the form �av

νµ(X, Y ) in the same way.

Definition 5. We call the form ων[U](X) on the space of functions U 1(X), . . . , UN(X) the
weakly nonlocal 1-form of hydrodynamic type if it has the form

ων[U](X) = −1

2

M∑
s,p=1

κsp

∂f (s)

∂Uν
(U(X))

∫ +∞

−∞
ν(X − Y )f (p)(U(Y )) dY (6.2)

for some functions f (s)(U) and the quadratic form κsp.

It is not difficult to see that the form �νµ(X, Y ) given by (1.17) is connected with (6.2)
by the relation

�νµ(X, Y ) = [dω]νµ(X, Y ). (6.3)
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As before, we introduce the extended space of functions ϕ(θ, x) 2π -periodic w.r.t. each
θα . After the change of coordinate X = εx we can introduce the 1-form

ω̂i(θ, X) = ci(ϕ(θ, X), εϕX(θ, X), . . .) − 1

2ε

g∑
s=1

es

δĤ
(s)

δϕi(θ, X)

×
∫ +∞

−∞
ν(X − Y )h(s)(ϕ(θ, Y ), εϕY (θ, Y ), . . .) dY (6.4)

where Ĥ
(s) = ∫ +∞

−∞ h(s)(ϕ(θ, X), . . .) dX.
It is easy to see that the relation

�ij (x, y) = [dω]ij (x, y)

gives

�̂ij (θ, θ′, X, Y ) = [dω̂]ij (θ, θ′, X, Y )

on the ‘extended’ functional space.
According to our previous approach we will investigate here the main term of the restriction

of the 1-form ω̂i[ϕ](θ, X) on the submanifolds Mε[Ψ(1)] (in coordinates (U, θ∗
0)) in the weak

sense. Let us formulate here the corresponding theorem.

Theorem 6. The restriction of the form ω̂i(θ, X) to any submanifold Mε[Ψ(1)] in coordinates
Uν(X), θ∗α

0 (X) can be written as

ωrest =
∫ +∞

−∞
ω1

ν(X)δUν(X) dX +
∫ +∞

−∞
ω2

α(X)δθ∗α
0 (X) dX

where

(I) The form ω1
ν(X) can be written as

ω1
ν(X) = −1

ε

∂kα

∂Uν
(X)

∫ +∞

−∞
ν(X − Y )Iα(Y ) dY

− 1

2ε

g∑
s=1

es

∂〈h(s)〉
∂Uν

(X)

∫ +∞

−∞
ν(X − Y )〈h(s)〉(Y ) dY +

o(1)

ε

(summation over α = 1, . . . , m) where

Iα(U) = 〈
ciϕ

i
θα

〉
+

1

2
γ δ

α (U)

g∑
s=1

es

[〈
h(s)J

(s)
δ

〉 − 〈h(s)〉〈J (s)
δ

〉] − 1

2

g∑
s=1

es

〈
h(s)T (s)

α

〉
(6.5)

and the values J
(s)
δ (ϕ, . . .), γ δ

α (U) and T (s)
α (ϕ, . . .) are introduced in (3.17), (3.19) and

(4.7).
(II) The form ω2

α(X) has the order O(1) for ε → 0.

Proof. (I) We have

ω1
ν(X) =

∫ (
1

ε

∂kα

∂Uν
(X)ν(Z − X)ϕi

θα (θ, Z) + δ(Z − X)�i
Uν (θ + · · · , U(Z))

)

× ω̂i(θ, Z)
dmθ

(2π)m
dZ

= − 1

ε

∫
∂kα

∂Uν
(X)ν(X − Z)ci(ϕ(θ, Z), . . .)ϕi

θα (θ, Z)
dmθ

(2π)m
dZ
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+
1

2ε2

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Z)ϕi

θα (θ, Z)
δĤ

(s)

δϕi(θ, Z)

× ν(Z − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY dZ

− 1

2ε

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)

× ν(X − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY + O(1)

= − 1

ε

∫
∂kα

∂Uν
(X)ν(X − Z)〈ci(ϕ(θ, Z), . . .)ϕi

θα (θ, Z)〉 dZ

+
1

2ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Z)W

(s)
θαZ(θ, Z)

× ν(Z − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY dZ

− 1

2ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Z)T

(s)
α,Z(θ, Z)

× ν(Z − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY dZ

− 1

2ε

∫ g∑
s=1

es�
i
Uν (θ + . . . , U(X))

δĤ
(s)

δϕi(θ, X)

× ν(X − Y )h(s)(ϕ(θ, Y ), · · ·) dmθ

(2π)m
dY + O(1).

Here 〈· · ·〉 means again the averaging on the family � and the functions W(s), T (s)
α are the

same as in (4.4), (4.7).
As in the proof of theorem 4 we can omit here also (by the same reason) the averaging

with values like W
(s)
θα (θ,±∞) in the main order of ε. We can write then

ω1
ν(X) = −1

ε

∫
∂kα

∂Uν
(X)ν(X − Y )

〈
ci(ϕ(θ, Y ), . . .)ϕi

θα (θ, Y )
〉
dY

+
1

2ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)W

(s)
θα (θ, X)ν(X − Y )h(s)(ϕ(θ, Y ), . . .)

dmθ

(2π)m
dY

− 1

2ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Y )W

(s)
θα (θ, Y )h(s)(ϕ(θ, Y ), . . .)

dmθ

(2π)m
dY

− 1

2ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)T (s)

α (θ, X)ν(X − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY

+
1

2ε

∫ g∑
s=1

es

∂kα

∂Uν
(X)ν(X − Y )T (s)

α (θ, Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY
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− 1

2ε

∫ g∑
s=1

es�
i
Uν (θ + · · · , U(X))

δĤ
(s)

δϕi(θ, X)

× ν(X − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY + O(1).

We can now use the same arguments as in the proof of theorem 4 and make in the main
order of ε the independent integration w.r.t. θ of the rapidly oscillating functions depending
on X and Y before the integration w.r.t. Y. We can then omit the second term of the expression
above in the main order. Using also relations (5.12) and (5.13) we get the statement (I) of the
theorem.

(II) We have

ω2
α(X) =

∫
ϕi

θα (θ, X)ω̂i(θ, X)
dmθ

(2π)m

=
∫

ci(ϕ(θ, X), . . .)ϕi
θα (θ, X)

dmθ

(2π)m
− 1

2

∫ g∑
s=1

es

(
W

(s)
θαX(θ, X) − T

(s)
α,X(θ, X)

)

× ν(X − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY.

Using the identity

−1

2

∫ g∑
s=1

es

(
W

(s)
θαX(θ, X) − T

(s)
α,X(θ, X)

)
ν(X − Y )h(s)(ϕ(θ, Y ), . . .)

dmθ

(2π)m
dY

= − 1

2

∂

∂X

∫ g∑
s=1

es

(
W

(s)
θα (θ, X) − T (s)

α (θ, X)
)

× ν(X − Y )h(s)(ϕ(θ, Y ), . . .)
dmθ

(2π)m
dY

+
1

2

∫ g∑
s=1

es

(
W

(s)
θα (θ, X) − T (s)

α (θ, X)
)
h(s)(ϕ(θ, X), . . .)

dmθ

(2π)m

we easily get part (II) of the theorem. �

Definition 6. We call the 1-form

ωav
ν (X) = − ∂kα

∂Uν
(X)

∫ +∞

−∞
ν(X − Y )Iα(Y ) dY

− 1

2

g∑
s=1

es

∂〈h(s)〉
∂Uν

(X)

∫ +∞

−∞
ν(X − Y )〈h(s)〉(Y ) dY (6.6)

where Iα(U) are defined by the formula (6.5) the averaging of the 1-form (6.1) on the family
of m-phase solutions of (3.1).

As follows from our construction we have the relation

�av
νµ(X, Y ) = [dωav]νµ(X, Y )

for the forms (5.15) and (6.6).
Using remark (6.3) it is not difficult to prove also that the quantities (6.5) give the action

variables defined in (5.3).
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We can see that the formulae (6.6), (6.5) give another procedure for the averaging of
2-forms �ij (x, y) represented in the form of the external derivatives of weakly nonlocal
1-forms ωi(x).

We can also write the formal Lagrangian formalism for the Whitham equations in the
form

δ

∫ ∫ [
ωav

ν (X)Uν
T (X) − 〈h〉(U)

]
dX dT = 0

or using (6.6)

δ

∫ ∫ [
kα
T (X)ν(X − Y )Iα(Y )

+
1

2

g∑
s=1

es〈h(s)〉T (X)ν(X − Y )〈h(s)〉(Y ) + 〈h〉
]

dX dY dT = 0. (6.7)
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